Câu hỏi:

11/09/2025 6 Lưu

Một chiếc đồng hồ có kim giờ \(OM\) chỉ số 12, kim phút \(ON\) chỉ số 3.

Một chiếc đồng hồ có kim giờ \(OM\) chỉ số 12, kim phút \(ON\) chỉ số 3.

Số đo của góc lượng giác \(\left( {OM,ON} \right)\) là (ảnh 1)

Số đo của góc lượng giác \(\left( {OM,ON} \right)\) là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi kim giờ \(OM\) chỉ số 12, kim phút \(ON\) chỉ số 3 thì \(\widehat {MON} = \frac{\pi }{2}\).

Từ hình vẽ ta thấy góc lượng giác \(\left( {OM,ON} \right)\) có tia đầu \(OM,\) tia cuối \(ON\), quay theo chiều dương (ngược chiều quay của kim đồng hồ) nên \(\left( {OM,ON} \right) = 2\pi - \frac{\pi }{2} + k2\pi = \frac{{3\pi }}{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) hoặc nếu theo chiều âm có thể kết luận \[\left( {OM,\,\,ON} \right) = - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Nhiệt độ ngoài trời lúc 19 giờ là \(h\left( {19} \right) = 31 + 3\sin \frac{\pi }{{12}}\left( {19 - 9} \right)\)\( = 31 + 3\sin \frac{{5\pi }}{6} = 32,5\)℃.

b) Ta có \( - 1 \le \sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 1 \Rightarrow - 3 \le 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 3 \Rightarrow 28 \le 31 + 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 34\,\,\forall t.\)

Do đó \(\max h\left( t \right) = 34 \Leftrightarrow \sin \frac{\pi }{{12}}\left( {t - 9} \right) = 1 \Leftrightarrow \frac{\pi }{{12}}\left( {t - 9} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 15 + 24k,k \in \mathbb{Z}.\)

Vì \(0 < t \le 24 \Rightarrow 0 \le 15 + 24k \le 24 \Leftrightarrow - \frac{{15}}{{24}} \le k \le \frac{3}{8}\).

Do \(k \in \mathbb{Z} \Rightarrow k = 0\) nên \(t = 15.\)

Vậy vào thời điểm 15 giờ thì nhiệt độ ở thành phố đó lớn nhất.

Lời giải

Ta có \[2\tan a - \cot a = 1 \Leftrightarrow 2\tan a - \frac{1}{{\tan a}} = 1 \Leftrightarrow \left[ \begin{array}{l}\tan a = 1\\\tan a = - \frac{1}{2}\end{array} \right.\].

Vì \[ - \frac{\pi }{2} < a < 0\] nên \[\tan a < 0\], suy ra \[\tan a = - \frac{1}{2}\], \[\cot a = - 2\].

Ta có \[\tan \left( {6\pi - a} \right) = - \tan a\]; \[\cot \left( {3\pi + a} \right) = \cot a\]; \[\tan \left( {\frac{{3\pi }}{2} + a} \right) = - \cot a\].

Vậy \[P = \frac{{\tan \left( {6\pi - a} \right) - 2\cot \left( {3\pi + a} \right)}}{{3\tan \left( {\frac{{3\pi }}{2} + a} \right)}} = \frac{{ - \tan a - 2\cot a}}{{ - 3\cot a}}\]\[ = \frac{{\frac{1}{2} + 4}}{6} = \frac{3}{4} = 0,75\].

Đáp án:\(0,75\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP