Câu hỏi:

11/09/2025 1,507 Lưu

Sinh nhật bạn của An vào ngày \[01\] tháng 05. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo \[100\] đồng vào ngày \[01\] tháng \[01\] năm \[2025\], sau đó cứ liên tục ngày sau hơn ngày trước \[100\] đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày \[01\] tháng \[01\] năm \[2025\] đến ngày \[30\] tháng \[4\] năm \[2025\]).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày \[01\] tháng \[01\] năm \[2025\] đến ngày \[30\] tháng \[4\] năm\[2025\]) là \[31 + 28 + 31 + 30 = 120\] ngày.

Số tiền bỏ ống heo ngày đầu tiên là: \[{u_1} = 100\] đồng.

Số tiền bỏ ống heo ngày thứ hai là: \[{u_2} = 100 + 100 = 100 + 1 \cdot 100\] đồng.

Số tiền bỏ ống heo ngày thứ ba là: \[{u_3} = 100 + 100 + 100 = 100 + 2 \cdot 100\] đồng.

Như vậy, số tiền bỏ ống heo mỗi ngày của bạn An lập thành một cấp số cộng có số hạng đầu \({u_1} = 100\), công sai \(d = 100\).

Sau \[120\] ngày thì số tiền An tích lũy được là tổng của \[120\] số hạng đầu của cấp số cộng trên.

Vậy số tiền An tích lũy được là \({S_{120}} = \frac{{120}}{2}\left[ {2{u_1} + \left( {120 - 1} \right)d} \right]\)\( = \frac{{120}}{2}\left( {2 \cdot 100 + 119 \cdot 100} \right)\)\( = 726\,000\) đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.

\[{M_o} = \frac{{50}}{3}\].

B.

\[{M_o} = \frac{{70}}{3}\].

C.

\[{M_o} = \frac{{70}}{2}\].

D.

\[{M_o} = \frac{{80}}{3}\].

Lời giải

Nhóm có tần số lớn nhất là \[\left[ {20;30} \right)\] nên nhóm này chứa mốt.

Giá trị nhỏ nhất của nhóm đó là \[20\].

Độ dài của nhóm đó là \[30 - 20 = 10\].

Tần số của nhóm đó là \[7\].

Tần số của nhóm liền trước và liền sau của nhóm đó lần lượt là \[6\]; \[5\].

Do đó \[{M_o} = 20 + \frac{{7 - 6}}{{\left( {7 - 6} \right) + \left( {7 - 5} \right)}} \cdot 10 = \frac{{70}}{3}\]. Chọn B.

Lời giải

Ta có \(4\sin 3x\sin 2x\cos x = 4\left( {\sin 3x\cos x} \right)\sin 2x = 4 \cdot \frac{1}{2}\left( {\sin 4x + \sin 2x} \right)\sin 2x\)

\( = 2\sin 4x\sin 2x + 2{\sin ^2}2x = \left( {\cos 2x - \cos 6x} \right) + 2\left( {\frac{{1 - \cos 4x}}{2}} \right)\)\( = \cos 2x - \cos 4x - \cos 6x + 1\).

Vậy \(a + b + c + d = 0\).

Đáp án:0.

Câu 4

A.

\(\left( {0;\pi } \right)\).

B.

\(\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right)\).

C.

\(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).

D.

\(\left( { - 3\pi ; - 2\pi } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP