Câu hỏi:

11/09/2025 9 Lưu

Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_1} = 8,{u_{n + 1}} = 4{u_n} - 9\) với \(n \in {\mathbb{N}^{\rm{*}}}\). Đặt \({v_n} = {u_n} - 3\) với \(n \in {\mathbb{N}^{\rm{*}}}\).

(a)\({v_1} = 5\).

(b) Dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân có công bội \(q = - 3\).

(c) Công thức của số hạng tổng quát \({v_n}\) là \({v_n} = 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

(d) Công thức của số hạng tổng quát \({u_n}\) là \({u_n} = 3 + 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \({v_1} = {u_1} - 3 = 8 - 3 = 5\).

b) Sai. Có \({v_{n + 1}} = {u_{n + 1}} - 3 = 4{u_n} - 9 - 3 = 4{u_n} - 12 = 4\left( {{u_n} - 3} \right) = 4{v_n} \Rightarrow \frac{{{v_{n + 1}}}}{{{v_n}}} = 4\) không đổi với mọi \(n \in {\mathbb{N}^*}\).

Vậy dãy số \(\left( {{v_n}} \right)\)là một cấp số nhân có số hạng đầu \({v_1} = 5\), công bội \({q_1} = 4\).

c) Sai. Số hạng tổng quát của cấp số nhân \(\left( {{v_n}} \right)\) là \({v_n} = {v_1} \cdot q_1^{n - 1} = 5 \cdot {4^{n - 1}}\).

d) Sai. Ta có \({v_n} = {u_n} - 3\), suy ra \({u_n} = 3 + {v_n} = 3 + 5 \cdot {4^{n - 1}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Nhiệt độ ngoài trời lúc 19 giờ là \(h\left( {19} \right) = 31 + 3\sin \frac{\pi }{{12}}\left( {19 - 9} \right)\)\( = 31 + 3\sin \frac{{5\pi }}{6} = 32,5\)℃.

b) Ta có \( - 1 \le \sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 1 \Rightarrow - 3 \le 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 3 \Rightarrow 28 \le 31 + 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 34\,\,\forall t.\)

Do đó \(\max h\left( t \right) = 34 \Leftrightarrow \sin \frac{\pi }{{12}}\left( {t - 9} \right) = 1 \Leftrightarrow \frac{\pi }{{12}}\left( {t - 9} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 15 + 24k,k \in \mathbb{Z}.\)

Vì \(0 < t \le 24 \Rightarrow 0 \le 15 + 24k \le 24 \Leftrightarrow - \frac{{15}}{{24}} \le k \le \frac{3}{8}\).

Do \(k \in \mathbb{Z} \Rightarrow k = 0\) nên \(t = 15.\)

Vậy vào thời điểm 15 giờ thì nhiệt độ ở thành phố đó lớn nhất.

Lời giải

Ta có \[2\tan a - \cot a = 1 \Leftrightarrow 2\tan a - \frac{1}{{\tan a}} = 1 \Leftrightarrow \left[ \begin{array}{l}\tan a = 1\\\tan a = - \frac{1}{2}\end{array} \right.\].

Vì \[ - \frac{\pi }{2} < a < 0\] nên \[\tan a < 0\], suy ra \[\tan a = - \frac{1}{2}\], \[\cot a = - 2\].

Ta có \[\tan \left( {6\pi - a} \right) = - \tan a\]; \[\cot \left( {3\pi + a} \right) = \cot a\]; \[\tan \left( {\frac{{3\pi }}{2} + a} \right) = - \cot a\].

Vậy \[P = \frac{{\tan \left( {6\pi - a} \right) - 2\cot \left( {3\pi + a} \right)}}{{3\tan \left( {\frac{{3\pi }}{2} + a} \right)}} = \frac{{ - \tan a - 2\cot a}}{{ - 3\cot a}}\]\[ = \frac{{\frac{1}{2} + 4}}{6} = \frac{3}{4} = 0,75\].

Đáp án:\(0,75\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP