Câu hỏi:

11/09/2025 9 Lưu

Hàm số y=fx có bảng biến thiên như hình vẽ dưới đây.

Ảnh có chứa văn bản, ảnh chụp màn hình, phần mềm, Biểu tượng máy tính

Mô tả được tạo tự động

Cho các khẳng định sau:

(1) Đồ thị hàm số có tiệm cận đứng x=2.

(2) Hàm số đạt giá trị cực đại tại x=0.

(3) Hàm số đồng biến trên 2;0.

(4) Hàm số có tiệm cận ngang y=1.

Số khẳng định đúng là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khẳng định (1) đúng; khẳng định (2) sai; khẳng định (3) đúng và khẳng định (4) sai.

Vậy có 2 khẳng định đúng. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số ta có:

a) Đồ thị hàm số có một điểm cực trị là \(\left( {0;0} \right)\).

b) \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty \).

c) Đồ thị hàm số có 2 đường tiệm cận đứng là \(x = 1;x = - 1\).

d) Đồ thị hàm số có 1 đường tiệm cận ngang là \(y = 2\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

Câu 2

Lời giải

Đáp án A: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{1 + x}}{{1 - x}} = - 1\] \( \Rightarrow y = - 1\)là tiệm cận ngang .

Đáp án B: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{x - 2}}{{x + 2}} = 1\] \( \Rightarrow y = 1\) là tiệm cận ngang.

Đáp án C: \[\mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = - \infty \]; \[\mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = + \infty \]\( \Rightarrow \)đồ thị hàm số không có tiệm cận ngang.

Đáp án D: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1 - x}}{{1 - x}} = 1\] \( \Rightarrow y = 1\)là tiệm cận ngang. Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP