Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:

Tìm tổng số các giá trị nguyên dương của tham số \(m \in \left( { - 10\,;\,10} \right)\) để đồ thị hàm số \(y = f\left( x \right)\) có tổng số đường tiệm cận đứng và đường tiệm cận ngang là \(4\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:

A. \(42\).
Quảng cáo
Trả lời:
Từ bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \left( {m - 1} \right)\left( {2 - m} \right)\).
Suy ra tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) là \(y = 0\) và \(y = \left( {m - 1} \right)\left( {2 - m} \right)\).
Lại có \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = + \infty \) suy ra tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) là \(x = - 2\).
Và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \) suy ra tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) là \(x = 2\).
Đề đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang là \(4\) khi và chỉ khi \(\left( {m - 1} \right)\left( {2 - m} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\).
Vì \(m \in \left( { - 10\,;\,10} \right)\) và \(m\) là số nguyên dương nên \(m \in \left\{ {3\,;\,4\,;\,5\,;\,6\,;\,7\,;\,8\,;\,9} \right\}\).
Vậy \(3 + 4 + 5 + 6 + 7 + 8 + 9 = 42\). Chọn A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.
b) Có \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]
c) Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].
d) Có \[\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f(x) + 2}} = 0\].
Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Câu 3
A. \(m < 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



