Câu hỏi:

12/09/2025 7 Lưu

Hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Ảnh có chứa văn bản, ảnh chụp màn hình, phần mềm, Biểu tượng máy tính

Mô tả được tạo tự động

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số, ta có:

Đồ thị hàm số có tiệm cận đứng là \(x = 1\) và tiệm cận ngang là \(y = 1\). Do đó loại A, B.

Nhận thấy đồ thị hàm số đi qua điểm (0; −1) . Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đồ thị hàm số ta có:

a) Đồ thị hàm số có một điểm cực trị là \(\left( {0;0} \right)\).

b) \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty \).

c) Đồ thị hàm số có 2 đường tiệm cận đứng là \(x = 1;x = - 1\).

d) Đồ thị hàm số có 1 đường tiệm cận ngang là \(y = 2\).

Đáp án: a) Sai;   b) Sai;   c) Sai;   d) Sai.

Câu 2

Lời giải

Đáp án A: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{1 + x}}{{1 - x}} = - 1\] \( \Rightarrow y = - 1\)là tiệm cận ngang .

Đáp án B: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{x - 2}}{{x + 2}} = 1\] \( \Rightarrow y = 1\) là tiệm cận ngang.

Đáp án C: \[\mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = - \infty \]; \[\mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} + 2}}{{x + 1}} = + \infty \]\( \Rightarrow \)đồ thị hàm số không có tiệm cận ngang.

Đáp án D: \[\mathop {\lim }\limits_{x \to \pm \infty } \frac{{ - 1 - x}}{{1 - x}} = 1\] \( \Rightarrow y = 1\)là tiệm cận ngang. Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP