Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 5\;{\rm{cm,}}\;AC = 12\;{\rm{cm}}{\rm{.}}\) Gọi \(AD\) là đường cao của \(\Delta ABC.\)
a) \(BC = 13\;{\rm{cm}}{\rm{.}}\)
b) Diện tích \(\Delta ABC\) bằng \(60\;{\rm{c}}{{\rm{m}}^2}.\)
c) \(AD = 4,5\;{\rm{cm}}{\rm{.}}\)
d) \(\widehat B > \widehat {DAB}.\)
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 5\;{\rm{cm,}}\;AC = 12\;{\rm{cm}}{\rm{.}}\) Gọi \(AD\) là đường cao của \(\Delta ABC.\)
a) \(BC = 13\;{\rm{cm}}{\rm{.}}\)
b) Diện tích \(\Delta ABC\) bằng \(60\;{\rm{c}}{{\rm{m}}^2}.\)
c) \(AD = 4,5\;{\rm{cm}}{\rm{.}}\)
d) \(\widehat B > \widehat {DAB}.\)
Quảng cáo
Trả lời:

a) Đúng.
Vì tam giác \(ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:
\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 169\) nên \(BC = \sqrt {169} = 13\;\left( {{\rm{cm}}} \right).\)
Vậy \(BC = 13\;{\rm{cm}}{\rm{.}}\)
b) Sai.
Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 5 \cdot 12 = 30\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích \(\Delta ABC\) bằng \(30\;{\rm{c}}{{\rm{m}}^2}.\)
c) Sai.
Vì \(AD\) là đường cao của \(\Delta ABC\) nên diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}AD \cdot BC.\)
Do đó, \(\frac{1}{2} \cdot AD \cdot 13 = 30,\) suy ra \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\) Vậy \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\)
d) Đúng.
Vì \(\Delta ABD\) vuông tại \(D\) nên theo định lí Pythagore ta có: \(B{D^2} + A{D^2} = A{B^2}\) nên \(B{D^2} + {\left( {\frac{{60}}{{13}}} \right)^2} = {5^2},\) hay \(B{D^2} = \frac{{625}}{{169}},\) suy ra \[BD = \sqrt {\frac{{625}}{{169}}} = \frac{{25}}{{13}}\;\left( {{\rm{cm}}} \right).\]
\(\Delta ABD\) có: \(BD < AD\;\left( {{\rm{Do}}\;\;\frac{{25}}{{13}} < \frac{{60}}{{13}}} \right)\) nên \(\widehat B > \widehat {DAB}.\) Vậy \(\widehat B > \widehat {DAB}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(BC = 12\;{\rm{cm}}.\)
Câu 2
Lời giải
Đáp án đúng là: A
Vì: \(A{B^2} + A{C^2} = B{C^2}\;\left( {{\rm{do}}\;{{21}^2} + {{20}^2} = {{29}^2}} \right)\) nên tam giác \(ABC\) vuông tại \(A\) (định lí Pythagore đảo).
Do đó, \(\widehat A = 90^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(8\;{\rm{m}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



