Câu hỏi:

17/09/2025 21 Lưu

Cho \(\Delta ABC\) vuông tại \(A\)\(AB = 5\;{\rm{cm,}}\;AC = 12\;{\rm{cm}}{\rm{.}}\) Gọi \(AD\) là đường cao của \(\Delta ABC.\)

          a) \(BC = 13\;{\rm{cm}}{\rm{.}}\)

          b) Diện tích \(\Delta ABC\) bằng \(60\;{\rm{c}}{{\rm{m}}^2}.\)

          c) \(AD = 4,5\;{\rm{cm}}{\rm{.}}\)

          d) \(\widehat B > \widehat {DAB}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC  vuông tại A có AB = 5cm; AC = 12cm. Gọi AD là đường cao của tam giác ABC (ảnh 1)

a) Đúng.

Vì tam giác \(ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:

\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {12^2} = 169\) nên \(BC = \sqrt {169} = 13\;\left( {{\rm{cm}}} \right).\)

Vậy \(BC = 13\;{\rm{cm}}{\rm{.}}\)

b) Sai.

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 5 \cdot 12 = 30\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích \(\Delta ABC\) bằng \(30\;{\rm{c}}{{\rm{m}}^2}.\)

c) Sai.

\(AD\) là đường cao của \(\Delta ABC\) nên diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}AD \cdot BC.\)

Do đó, \(\frac{1}{2} \cdot AD \cdot 13 = 30,\) suy ra \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\) Vậy \(AD = \frac{{60}}{{13}}\;{\rm{cm}}{\rm{.}}\)

d) Đúng.  

\(\Delta ABD\) vuông tại \(D\) nên theo định lí Pythagore ta có: \(B{D^2} + A{D^2} = A{B^2}\) nên \(B{D^2} + {\left( {\frac{{60}}{{13}}} \right)^2} = {5^2},\) hay \(B{D^2} = \frac{{625}}{{169}},\) suy ra \[BD = \sqrt {\frac{{625}}{{169}}} = \frac{{25}}{{13}}\;\left( {{\rm{cm}}} \right).\]

\(\Delta ABD\) có: \(BD < AD\;\left( {{\rm{Do}}\;\;\frac{{25}}{{13}} < \frac{{60}}{{13}}} \right)\) nên \(\widehat B > \widehat {DAB}.\) Vậy \(\widehat B > \widehat {DAB}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(16\)

Áp dụng định lý Pythagore vào \(\Delta ABD\) vuông tại \(A\) ta có:

\(B{D^2} = A{B^2} + A{D^2} = {5^2} + {15^2} = 250\) nên \(BD = \sqrt {250} \approx 16\;{\rm{km}}{\rm{.}}\)

Vậy khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay là khoảng \(16\;{\rm{km}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C

Trong một tam giác, nếu bình phương của một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BC = 12\;{\rm{cm}}.\)   

B. \(BC = 21\;{\rm{cm}}.\)          
C. \(BC = 19\;{\rm{cm}}.\)                               
D. \(BC = 17\;{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP