Một máy bay ở độ cao \(5\;{\rm{km}}{\rm{.}}\) Khoảng cách từ hình chiếu vuông góc của máy bay xuống mặt đất (vị trí \(A\)) đến vị trí \(D\) của sân bay là \(15\;{\rm{km}}\) (Hình vẽ). Hỏi khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay là bao nhiêu \({\rm{km?}}\) (Làm tròn kết quả đến hàng đơn vị)
Một máy bay ở độ cao \(5\;{\rm{km}}{\rm{.}}\) Khoảng cách từ hình chiếu vuông góc của máy bay xuống mặt đất (vị trí \(A\)) đến vị trí \(D\) của sân bay là \(15\;{\rm{km}}\) (Hình vẽ). Hỏi khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay là bao nhiêu \({\rm{km?}}\) (Làm tròn kết quả đến hàng đơn vị)

Quảng cáo
Trả lời:

Đáp án: \(16\)
Áp dụng định lý Pythagore vào \(\Delta ABD\) vuông tại \(A\) ta có:
\(B{D^2} = A{B^2} + A{D^2} = {5^2} + {15^2} = 250\) nên \(BD = \sqrt {250} \approx 16\;{\rm{km}}{\rm{.}}\)
Vậy khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay là khoảng \(16\;{\rm{km}}{\rm{.}}\)Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Trong một tam giác, nếu bình phương của một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.
Lời giải
a) Đúng.
Vì \(AH\) là đường cao của \(\Delta ABC\) nên \(AH \bot BC.\) Do đó, \(\Delta ABH\) vuông tại \(H.\)
Nên \(A{H^2} + H{B^2} = A{B^2}\) (định lí Pythagore), suy ra \(A{H^2} = A{B^2} - H{B^2} = {\left( {\sqrt {80} } \right)^2} - {4^2} = 64.\)
Suy ra \(AH = \sqrt {64} = 8\;{\rm{m}}{\rm{.}}\) Vậy \(AH = 8\;{\rm{m}}{\rm{.}}\)
b) Sai.
Vì \(AH \bot BC\) nên \(\Delta ACH\) vuông tại \(H.\)
Suy ra \(A{H^2} + H{C^2} = A{C^2}\) (định lí Pythagore), suy ra \(C{H^2} = A{C^2} - A{H^2} = {10^2} - 64 = 36.\)
Suy ra \(CH = \sqrt {36} = 6\;{\rm{m}}{\rm{.}}\) Vậy \(CH = 6\;{\rm{m}}{\rm{.}}\)
c) Sai.
Chu vi \(\Delta AHC\) là: \({P_1} = AH + HC + AC = 8 + 6 + 10 = 24\;\left( {\rm{m}} \right).\)
Vậy chu vi \(\Delta AHC\) bằng \(24\;{\rm{m}}{\rm{.}}\)
d) Sai.
Ta có: \(BC = BH + CH = 4 + 6 = 10\;\left( {\rm{m}} \right).\)
Chu vi \(\Delta ABC\) là: \({P_2} = AC + AB + BC = 10 + \sqrt {80} + 10 = 20 + \sqrt {80} \;\left( {\rm{m}} \right).\)
Ta có: \({P_2} - {P_1} = 20 + \sqrt {80} - 24 = \sqrt {80} - 4 \approx 5\;\left( {\rm{m}} \right).\)
Vậy chu vi \(\Delta ABC\) lớn hơn chu vi \(\Delta AHC\) khoảng \(5\;{\rm{m}}{\rm{.}}\)
Câu 3
A. \(8\;{\rm{m}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(BC = 12\;{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.