Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chiều cao của tam giác đó (Đơn vị: \({\rm{cm}}\)). (Làm tròn kết quả đến hàng đơn vị).
Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(30\;{\rm{cm}}{\rm{.}}\) Tính chiều cao của tam giác đó (Đơn vị: \({\rm{cm}}\)). (Làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:

Đáp án: \(26\)

Kẻ đường cao \(AD\) của tam giác đều \(ABC.\)
Vì tam giác \(ABC\) đều nên \(AD\) là đường cao đồng thời là đường trung tuyến của tam giác đó.
Suy ra \(CD = \frac{1}{2}BC = \frac{1}{2} \cdot 30 = 15\;\left( {{\rm{cm}}} \right).\)
Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:
\(A{D^2} + D{C^2} = A{C^2}\)
\(A{D^2} + {15^2} = {30^2}\)
\(A{D^2} = 675\)
\(AD = \sqrt {675} \approx 26\;{\rm{cm}}{\rm{.}}\)
Vậy chiều cao của tam giác \(ABC\) đều khoảng \(26\;{\rm{cm}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(16\)
Áp dụng định lý Pythagore vào \(\Delta ABD\) vuông tại \(A\) ta có:
\(B{D^2} = A{B^2} + A{D^2} = {5^2} + {15^2} = 250\) nên \(BD = \sqrt {250} \approx 16\;{\rm{km}}{\rm{.}}\)
Vậy khoảng cách từ vị trí máy bay đến vị trí \(D\) của sân bay là khoảng \(16\;{\rm{km}}{\rm{.}}\)Câu 2
Lời giải
Đáp án đúng là: C
Trong một tam giác, nếu bình phương của một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(BC = 12\;{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.