Câu hỏi:

18/09/2025 32 Lưu

Cho hình bình hành \[ABCD\] \[AC \bot AD\]\(AD = 3,5\,;\,\,\widehat D = 50^\circ \). Hỏi diện tích của hình bình hành là bao nhiêu? (Kết quả làm tròn đến hàng phần mười)

A. 14.                            
B. \[14,6.\]                    
C. \[14,5.\]                    
D. \[14,9.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Hỏi diện tích của hình bình hành là bao nhiêu? (Kết quả làm tròn đến hàng phần mười) (ảnh 1)

Xét \[\Delta ADC\] vuông tại \[A,\] ta có: \(AC = AD \cdot \tan \widehat {ADC} = {\rm{ }}3,5 \cdot \tan \,50^\circ .\)

Khi đó gọi S là diện tích hình bình hành, ta có:

\[S = AD \cdot AC = 3,5 \cdot 3,5\tan 50^\circ \approx 14,6.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:

a) Từ phương trình (2), ta có \(y = 2x + 4\).

b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).

c) Phương trình \(0x = 0\) vô nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp thế như sau:

Từ phương trình (2), ta có \(y = 2x + 4\).

Thay \(y = 2x + 4\) vào phương trình (1), ta được:

\(6x - 3\left( {2x + 4} \right) = - 12\) hay \(0x = 0\).

Phương trình trên có vô số nghiệm nên hệ phương trình đã cho có vô số nghiệm.

Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {x;\,\,2x + 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Câu 2

A. \[y = 2x.\]                 
B. \[y = - 2x.\]              
C. \[y = 2x + 1.\]          
D. \[y = - 2x + 1.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Nhận thấy đường thẳng \[d\] đi qua các điểm có tọa độ \[\left( {0\,;\,\,0} \right)\]\[\left( {1\,;\,\,2} \right).\]

Do đó, đường thẳng \[d\] biểu diễn nghiệm của phương trình \[y = 2x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(5\).                         
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP