Câu hỏi:

18/09/2025 47 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)

Cho phương trình \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]. Hỏi có bao nhiêu giá trị của \(x\) thỏa mãn phương trình đã cho?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 2.

Ta có \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]

\[\left( {x - 2} \right)\left( {3x + 5} \right) - 2\left( {x - 2} \right)\left( {x + 1} \right)\]

\[\left( {x - 2} \right)\left[ {\left( {3x + 5} \right) - 2\left( {x - 2} \right)} \right]\]

\[\left( {x - 2} \right)\left( {x + 3} \right) = 0\]

\[x - 2 = 0\] hoặc \[x + 3 = 0\]

\[x = 2\] hoặc \[x = - 3\].

Do đó phương trình có hai nghiệm \[x = 2\]; \[x = - 3\] nên có 2 giá trị của \(x\) thỏa mãn phương trình đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:

a) Từ phương trình (2), ta có \(y = 2x + 4\).

b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).

c) Phương trình \(0x = 0\) vô nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp thế như sau:

Từ phương trình (2), ta có \(y = 2x + 4\).

Thay \(y = 2x + 4\) vào phương trình (1), ta được:

\(6x - 3\left( {2x + 4} \right) = - 12\) hay \(0x = 0\).

Phương trình trên có vô số nghiệm nên hệ phương trình đã cho có vô số nghiệm.

Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {x;\,\,2x + 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Câu 2

A. \[y = 2x.\]                 
B. \[y = - 2x.\]              
C. \[y = 2x + 1.\]          
D. \[y = - 2x + 1.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Nhận thấy đường thẳng \[d\] đi qua các điểm có tọa độ \[\left( {0\,;\,\,0} \right)\]\[\left( {1\,;\,\,2} \right).\]

Do đó, đường thẳng \[d\] biểu diễn nghiệm của phương trình \[y = 2x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {x;\,\, - 3x - 6} \right)\) với \(x \in \mathbb{R}\) tùy ý.        
B. \(\left( { - 3y + 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
C. \[\left( {x;\,\, - 3x + 6} \right)\] với \[x \in \mathbb{R}\] tùy ý.       
D. \(\left( { - 3y - 6;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP