B. TỰ LUẬN (3,0 điểm)
(1,0 điểm) Giải bài toán sau bằng cách lập hệ phương trình:
Đại hội Thể thao Đông Nam Á – SEA Games (South East Asian Games) là sự kiện thể thao được tổ chức 2 năm 1 lần với sự tham gia của các vận động viên trong khu vực Đông Nam Á. Việt Nam là đội chủ nhà của SEA Games 31 diễn ra từ ngày 12/5/2022 đến ngày 23/5/2022. Ở môn bóng đá nam, một bảng đấu có 5 đội A, B, C, D, E thi đấu theo thể thức vòng tròn một lượt (mỗi đội thi đấu đúng một trận với các đội còn lại).
Trong mỗi trận đấu, đội thắng được 3 điểm, đội hòa được 1 điểm và đội thua được 0 điểm. Khi kết thúc bảng đấu, các đội A, B, C, D, E lần lượt có điểm số là \(10\,;\,\,9\,;\,\,6\,;\,\,4\,;\,\,0.\) Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)?
B. TỰ LUẬN (3,0 điểm)
(1,0 điểm) Giải bài toán sau bằng cách lập hệ phương trình:
Đại hội Thể thao Đông Nam Á – SEA Games (South East Asian Games) là sự kiện thể thao được tổ chức 2 năm 1 lần với sự tham gia của các vận động viên trong khu vực Đông Nam Á. Việt Nam là đội chủ nhà của SEA Games 31 diễn ra từ ngày 12/5/2022 đến ngày 23/5/2022. Ở môn bóng đá nam, một bảng đấu có 5 đội A, B, C, D, E thi đấu theo thể thức vòng tròn một lượt (mỗi đội thi đấu đúng một trận với các đội còn lại). |
|
Trong mỗi trận đấu, đội thắng được 3 điểm, đội hòa được 1 điểm và đội thua được 0 điểm. Khi kết thúc bảng đấu, các đội A, B, C, D, E lần lượt có điểm số là \(10\,;\,\,9\,;\,\,6\,;\,\,4\,;\,\,0.\) Hỏi có bao nhiêu trận hòa và cho biết đó là trận hòa giữa các đội nào (nếu có)?
Quảng cáo
Trả lời:

Hướng dẫn giải
Gọi \(x\) là số trận thắng – thua và \(y\) là số trận hòa \[\left( {x,{\rm{ }}y \in \mathbb{N}*} \right)\].
Nếu có 5 đội tham gia thi đấu, mỗi đội phải đấu với 4 đội còn lại nên với 5 đội tham gia thì có \(5 \cdot 4 = 20\) (trận đấu). Nhưng mỗi trận đấy có 2 đội tham gia nên tổng số trận đấu khi có 5 đội tham gia là \(\frac{{5 \cdot 4}}{2} = 10\) (trận đấu).
Vì có 10 trận đấu nên
Mặt khác, tổng số điểm các đội là \(10 + 9 + 6 + 4 + 0 = 29\) (điểm).
Mỗi trận thắng – thua có tổng số điểm là 3 và mỗi trận hòa có tổng số có tổng số điểm là 2 nên ta có phương trình \(3x + 2y = 29 & \left( 2 \right)\)
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình
Từ phương trình thứ hai ta có \(x + y = 10\) suy ra \(x = 10 - y\). Thế vào phương trình thứ nhất, ta được:
\(3\left( {10 - y} \right) + 2y = 29\), suy ra \(30 - 3y + 2y = 29\) hay \(y = 1\) (thỏa mãn).
Từ đó \(x = 10 - y = 10 - 1 = 9\) (thỏa mãn).
Mỗi đội có 4 trận đấu với các đội còn lại mà đội A có 10 điểm tức đội A thắng 3 trận hòa 1 trận.
Đội B có 9 điểm tức thắng 3 trận thua 1 trận.
Đội C có 6 điểm tức thắng 2 trận thua 2 trận.
Đội D có 4 điểm thắng 1 trận hòa 1 trận.
Đội E không có điểm tức là thua hết 4 trận.
Vậy trận hòa là của đội A và đội D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 2.
Ta có \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left( {3x + 5} \right) - 2\left( {x - 2} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left[ {\left( {3x + 5} \right) - 2\left( {x - 2} \right)} \right]\]
\[\left( {x - 2} \right)\left( {x + 3} \right) = 0\]
\[x - 2 = 0\] hoặc \[x + 3 = 0\]
\[x = 2\] hoặc \[x = - 3\].
Do đó phương trình có hai nghiệm \[x = 2\]; \[x = - 3\] nên có 2 giá trị của \(x\) thỏa mãn phương trình đã cho.
Lời giải
Hướng dẫn giải
Đáp số: \[ - {\bf{2}}\].
Giải bất phương trình: \(x\left( {5x + 1} \right) + 4\left( {x + 3} \right) \ge 5{x^2}\)
\(5{x^2} + x + 4x + 12 \ge 5{x^2}\)
\(5x \ge - 12\)
\(x \ge \frac{{ - 12}}{5}\).
Do đó nghiệm của bất phương trình là \(x \ge \frac{{ - 12}}{5}\,\,\,\left( { = - 2,4} \right)\).
Vậy số nguyên nhỏ nhất thỏa mãn bất phương trình là \(x = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:
a) Từ phương trình (2), ta có \(y = 2x + 4\).
b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).
c) Phương trình \(0x = 0\) vô nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:
a) Từ phương trình (2), ta có \(y = 2x + 4\).
b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).
c) Phương trình \(0x = 0\) vô nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).
Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).
a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.
b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).
c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).
d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.