Câu hỏi:

18/09/2025 6 Lưu

(1,5 điểm)

1) Cho tam giác \(ABC\) vuông tại \(A\)\(AB = 9\)\(\widehat {C\,} = 32^\circ .\) Tính độ dài các cạnh còn lại của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm).

2) Cho hai tòa nhà 1 và tòa nhà 2 như hình vẽ bên. Trên nóc tòa nhà 2 có một cột ăng-ten thẳng cao \(4\) m. Từ vị trí quan sát \(A\) (trên nóc tòa nhà 1) cao \(7\) m so với mặt đất có thể nhìn thấy đỉnh \(B\) và chân \(C\) của cột ăng-ten lần lượt dưới góc \(50^\circ \)\(40^\circ \) so với phương nằm ngang. Tính chiều cao \(CH\) của tòa nhà 2 (làm tròn kết quả đến hàng phần mười).

Tính độ dài các cạnh còn lại của tam giác ABC (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Tính độ dài các cạnh còn lại của tam giác ABC (ảnh 2)
1) Xét \(\Delta ABD\) vuông tại \(B\), ta có:

\(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)

\(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)

Vậy \[AC \approx 14,40\]\[BC \approx 16,98.\]

2) Xét \(\Delta ACD\) vuông tại \(D\), ta có: \(DC = AD \cdot \tan \widehat {CAD} = AD \cdot \tan 40^\circ \).

Xét \(\Delta ABD\) vuông tại \(D\), ta có: \(DB = AD \cdot \tan \widehat {BAD} = AD \cdot \tan 50^\circ \).

Ta có: \(BC = DB - DC\)

Suy ra \(4 = AD \cdot \tan 50^\circ - AD \cdot \tan 40^\circ \)

\(4 = AD \cdot \left( {\tan 50^\circ - \tan 40^\circ } \right)\)

\(AD = \frac{4}{{\tan 50^\circ - \tan 40^\circ }}\).

Do đó \(DC = AD \cdot \tan 40^\circ = \frac{{4\tan 40^\circ }}{{\tan 50^\circ - \tan 40^\circ }} \approx 9,5{\rm{\;(m)}}{\rm{.}}\)

Như vậy, \(CH = CD + DH \approx 9,5 + 7 = 16,5{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của tòa nhà 2 khoảng \(16,5{\rm{\;m}}.\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

\(ABC\) là tam giác đều cạnh \(20{\rm{\;cm}}\) nên \(BC = 20{\rm{\;cm}}\)\(\widehat {B\,} = 60^\circ .\)

Giả sử \(MB = x\,\,\left( {x > 0} \right){\rm{\;(cm)}}{\rm{.}}\) Khi đó \[QC = x{\rm{\;(cm)}}\]\(MQ = BC - BM - QC = 20 - 2x{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta MNB\) vuông tại \(M,\) ta có: \(MN = MB \cdot \tan B = x\tan 60^\circ = x\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)

Diện tích hình chữ nhật \(MNPQ\) là: \(S\left( x \right) = \left( {20 - 2x} \right) \cdot x\sqrt 3 = 2\sqrt 3 \cdot x\left( {10 - x} \right){\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Để diện tích hình chữ nhật \(MNPQ\) lớn nhất thì ta tìm giá trị lớn nhất của biểu thức \(S\left( x \right)\).

Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

Áp dụng bất đẳng thức \(\left( * \right)\) cho biểu thức \(S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right),\) ta được:

\[S\left( x \right) = 2\sqrt 3 \cdot x\left( {10 - x} \right) \le 2\sqrt 3 \cdot {\left( {\frac{{x + 10 - x}}{2}} \right)^2} = 50\sqrt 3 \].

Dấu “=” xảy ra khi và chỉ khi \[x = 10 - x\] hay \[x = 5\].

Vậy \(MB = 5{\rm{\;cm}}\) thì hình chữ nhật \(MNPQ\) có diện tích lớn nhất.

Lời giải

Hướng dẫn giải

Đáp số: \[ - {\bf{2}}\].

Giải bất phương trình: \(x\left( {5x + 1} \right) + 4\left( {x + 3} \right) \ge 5{x^2}\)

\(5{x^2} + x + 4x + 12 \ge 5{x^2}\)

\(5x \ge - 12\)

\(x \ge \frac{{ - 12}}{5}\).

Do đó nghiệm của bất phương trình là \(x \ge \frac{{ - 12}}{5}\,\,\,\left( { = - 2,4} \right)\).

Vậy số nguyên nhỏ nhất thỏa mãn bất phương trình là \(x = - 2\).

Câu 3

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

Giải hệ phương trình \[\left\{ \begin{array}{l}6x - 3y = - 12\,\,\,\left( 1 \right)\\ - 2x + y = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\] bằng phương pháp thế theo các bước:

a) Từ phương trình (2), ta có \(y = 2x + 4\).

b) Thay \(y = 2x + 4\) vào phương trình (1), ta được \(0x = 0\).

c) Phương trình \(0x = 0\) vô nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {2y + 4;\,\,y} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho bất phương trình \(m\left( {2x + 1} \right) < 8\).

a) Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) với \(m \in \mathbb{R}\) tùy ý.

b) Khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}\).

c) Khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x < - \frac{9}{2}\).

d) Khi \(m = - 2,\) bất phương trình đã cho có nghiệm nguyên lớn nhất là \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Biết đường thẳng \(y = ax + b\) đi qua hai điểm \(M\left( {3;\,\, - 5} \right)\)\(N\left( {1;\,\,2} \right).\) Tính tổng bình phương của \(a\)\(b.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP