Cho hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 2x + 4y = - 1\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\) và các khẳng định nào sau:
(i) Nhân hai vế của phương trình (1) với 2, rồi cộng từng vế với phương trình (2), ta nhận được phương trình \(0x = 3.\)
(ii) Nhân hai vế của phương trình (1) với 2, rồi cộng từng vế với phương trình (2), ta nhận được phương trình có vô số nghiệm.
(iii) Hệ phương trình đã cho vô nghiệm.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: B
Nhân hai vế của phương trình (1) với 2, ta được phương trình mới là: \(2x - 4y = 8\).
Cộng từng vế phương trình trên với phương trình (2), ta nhận được phương trình:
\(0x = 7\). Phương trình này vô nghiệm.
Do đó hệ phương trình đã cho vô nghiệm.
Như vậy chỉ có khẳng định (iii) là đúng. Ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.
⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)
Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)
⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)
Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)
⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của con dốc là 32 m.
b) ⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)
Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)
Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)
Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)
⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).
Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).
Thời gian đi từ \(A\) đến \(B\) là:
\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.
Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Sử dụng máy tính cầm tay, ta thực hiện bấm như sau:
Trên màn hình hiện ra kết quả \(1,408003909\), làm tròn kết quả đến chữ số thập phân thứ ba, ta được \(\cot 35^\circ 23' \approx 1,408\).
Câu 3
Tổng các nghiệm của phương trình \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\) là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.