Cho hệ phương trình \(\left\{ \begin{array}{l}x - 5y = 21\\ - 6x + 3y = - 45\end{array} \right.\). Biết cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình. Tính giá trị của \(T = {x_0} + {y_0}.\)
Cho hệ phương trình \(\left\{ \begin{array}{l}x - 5y = 21\\ - 6x + 3y = - 45\end{array} \right.\). Biết cặp số \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình. Tính giá trị của \(T = {x_0} + {y_0}.\)
Quảng cáo
Trả lời:
Đáp án: 3.
Từ phương trình thứ nhất, ta có: \(x - 5y = 21\), suy ra \(x = 21 + 5y\).
Thế \(x = 21 + 5y\) vào phương trình \( - 6x + 3y = - 45\) ta được \( - 6\left( {21 + 5y} \right) + 3y = - 45\) hay \( - 126 - 27y = - 45\), suy ra \(y = - 3.\)
Do đó, \(x = 21 + 5.\left( { - 3} \right) = 6.\)
Suy ra \(\left( {6; - 3} \right)\) là nghiệp của hệ phương trình đã cho.
Từ đó, \({x_0} = 6;{y_0} = - 3\) nên \(T = {x_0} + {y_0} = 6 + \left( { - 3} \right) = 3.\)
Vậy \(T = {x_0} + {y_0} = 3.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:
a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)
b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).
c) Phương trình \(0x = 1\) vô số nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)
Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:
a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)
b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).
c) Phương trình \(0x = 1\) vô số nghiệm.
d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.
Lời giải
Hướng dẫn giải
Đáp án: a) Đúng. b) Đúng. c) Sai. d) Sai.
Giải hệ phương trình đã cho bằng phương pháp cộng đại số như sau:
Nhân hai vế của phương trình thứ hai với 2, ta được:
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được:
\(0x + 0y = 1\) hay \(0x = 1\).
Phương trình trên vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Câu 2
Tổng các nghiệm của phương trình \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\) là
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Giải phương trình:
\(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)
\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)
\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)
\(x = - 9\) hoặc \(x = 4\)
Do đó, phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).
Vậy tổng các nghiệm của phương trình đó là: \(4 + \left( { - 9} \right) = - 5.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
