Câu hỏi:

18/09/2025 52 Lưu

Người ta dùng một loại xe tải để chở sữa tươi cho một nhà máy. Biết mỗi thùng sữa loại \(180\,\,{\rm{ml}}\) nặng trung bình \(10\,\,{\rm{kg}}.\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn. Hỏi xe có thể chở được tối đa bao nhiêu thùng sữa như vậy, biết bác lái xe nặng \(65\,\,kg?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 518.

Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\)

Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).

Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)

Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)

Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có

\(65 + 10x \le 5\,\,250\)

\(10x \le 5\,\,185\)

\(x \le 518,5\)

Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

 Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:

a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)

b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).

c) Phương trình \(0x = 1\)số nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp cộng đại số như sau:

Nhân hai vế của phương trình thứ hai với 2, ta được: 

 2x6y=52x6y=4.

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được:

\(0x + 0y = 1\) hay \(0x = 1\).

Phương trình trên vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

Lời giải

Hướng dẫn giải

a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). (ảnh 2)

Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của con dốc là 32 m.

b) Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

Câu 3

A. 5.                              
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x\left( {x - 1} \right) = 0\).                         
B. \(x\left( {x + 1} \right) = 0\).                             
C. \(x = 0\).                   
D. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 2x + 3y = 5.\]     
B. \[2x + 3y = 5.\]         
C. \[3x--2y = 5.\]          
D. \[2x--3y = 5.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP