Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến độ).
Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến độ).
Quảng cáo
Trả lời:

Hướng dẫn giải Đáp số: 23. Xét \(\Delta ABC\) có \(A{B^2} + B{C^2} = {5^2} + {12^2} = 169\); \(C{A^2} = {13^2} = 169.\) |
|
Do đó \(A{B^2} + B{C^2} = C{A^2},\) nên theo định lí Pythagore đảo ta có \(\Delta ABC\) vuông tại \(B.\)
Khi đó, ta có: \[\sin C = \frac{{AB}}{{AC}} = \frac{5}{{13}}.\]
Sử dụng MTCT, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(22^\circ 37'11.51'',\) làm tròn đến phút ta được \(23^\circ .\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 3.
Từ phương trình thứ nhất, ta có: \(x - 5y = 21\), suy ra \(x = 21 + 5y\).
Thế \(x = 21 + 5y\) vào phương trình \( - 6x + 3y = - 45\) ta được \( - 6\left( {21 + 5y} \right) + 3y = - 45\) hay \( - 126 - 27y = - 45\), suy ra \(y = - 3.\)
Do đó, \(x = 21 + 5.\left( { - 3} \right) = 6.\)
Suy ra \(\left( {6; - 3} \right)\) là nghiệp của hệ phương trình đã cho.
Từ đó, \({x_0} = 6;{y_0} = - 3\) nên \(T = {x_0} + {y_0} = 6 + \left( { - 3} \right) = 3.\)
Vậy \(T = {x_0} + {y_0} = 3.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Điều kiện xác định của phương trình \(\frac{{4x - 1}}{{x + 2}} + 1 = \frac{3}{{x - 3}}\) là \(x + 2 \ne 0\) và \(x - 3 \ne 0\) hay \(x \ne - 2;x \ne 3.\)
Câu 3
Tổng các nghiệm của phương trình \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\) là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.