Câu hỏi:

18/09/2025 5 Lưu

(0,5 điểm) Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí A. Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là \[12{\rm{ m}}.\]
NNNNNN (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

NNNNNN (ảnh 2)

Đặt tên các điểm như hình vẽ. Đặt \(CJ = x\,\,\left( {x > 0} \right).\)

\[AJ\,\,{\rm{//}}\,\,KB\] (cùng vuông góc với \(CI\)) nên hai tam giác \(AJC\)\(BKA\) là hai tam giác đồng dạng nên \(\frac{{JC}}{{KA}} = \frac{{JA}}{{KB}}\) nên \(\frac{x}{5} = \frac{{12}}{{KB}}\), suy ra \(KB = \frac{{60}}{x}\).

Diện tích khu nuôi cá là:

\(S\left( x \right) = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = \frac{1}{2}\left( {60 + 12x + \frac{{300}}{x} + 60} \right) = \frac{{150}}{x} + 6x + 60\).

Áp dụng bất đẳng thức Cauchy, ta có:

\[S\left( x \right) = \frac{{150}}{x} + 6x + 60 \ge 2\sqrt {\frac{{150}}{x} \cdot 6x} + 60 = 2\sqrt {900} + 60 = 120.\]

Dấu  xảy ra khi \[\frac{{150}}{x} = 6x\] nên \({x^2} = 25\), suy ra \(x = 5\,\,{\rm{m}}\)

Vậy diện tích nhỏ nhất có thể giăng là .\(120\,\,{{\rm{m}}^{\rm{2}}}{\rm{.}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 3.

Từ phương trình thứ nhất, ta có: \(x - 5y = 21\), suy ra \(x = 21 + 5y\).

Thế \(x = 21 + 5y\) vào phương trình \( - 6x + 3y = - 45\) ta được \( - 6\left( {21 + 5y} \right) + 3y = - 45\) hay \( - 126 - 27y = - 45\), suy ra \(y = - 3.\)

Do đó, \(x = 21 + 5.\left( { - 3} \right) = 6.\)

Suy ra \(\left( {6; - 3} \right)\) là nghiệp của hệ phương trình đã cho.

Từ đó, \({x_0} = 6;{y_0} = - 3\) nên \(T = {x_0} + {y_0} = 6 + \left( { - 3} \right) = 3.\)

Vậy \(T = {x_0} + {y_0} = 3.\)

Câu 2

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Điều kiện xác định của phương trình \(\frac{{4x - 1}}{{x + 2}} + 1 = \frac{3}{{x - 3}}\)\(x + 2 \ne 0\)\(x - 3 \ne 0\) hay \(x \ne - 2;x \ne 3.\)

Câu 3

A. \(12,45\)cm.             
B. \(15,56\,\,{\rm{cm}}{\rm{.}}\)                      
C. \(6,43\,\,{\rm{cm}}{\rm{.}}\)                             
D. \(8\)cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho \(a < b\). Khi đó:

a) \(4a - 2 > 4b - 2.\)                                           b) \(6 - 3a < 6 - 3b\).

c) \(4a + 1 < 4b + 5\).                                         d) \(7 - 2a > 4 - 2b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 5.                              
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x\left( {x - 1} \right) = 0\).                         
B. \(x\left( {x + 1} \right) = 0\).                             
C. \(x = 0\).                   
D. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP