Câu hỏi:

18/09/2025 45 Lưu

(0,5 điểm) Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí A. Hỏi diện tích nhỏ nhất có thể giăng là bao nhiêu, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là \[12{\rm{ m}}.\]
NNNNNN (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

NNNNNN (ảnh 2)

Đặt tên các điểm như hình vẽ. Đặt \(CJ = x\,\,\left( {x > 0} \right).\)

\[AJ\,\,{\rm{//}}\,\,KB\] (cùng vuông góc với \(CI\)) nên hai tam giác \(AJC\)\(BKA\) là hai tam giác đồng dạng nên \(\frac{{JC}}{{KA}} = \frac{{JA}}{{KB}}\) nên \(\frac{x}{5} = \frac{{12}}{{KB}}\), suy ra \(KB = \frac{{60}}{x}\).

Diện tích khu nuôi cá là:

\(S\left( x \right) = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = \frac{1}{2}\left( {60 + 12x + \frac{{300}}{x} + 60} \right) = \frac{{150}}{x} + 6x + 60\).

Áp dụng bất đẳng thức Cauchy, ta có:

\[S\left( x \right) = \frac{{150}}{x} + 6x + 60 \ge 2\sqrt {\frac{{150}}{x} \cdot 6x} + 60 = 2\sqrt {900} + 60 = 120.\]

Dấu  xảy ra khi \[\frac{{150}}{x} = 6x\] nên \({x^2} = 25\), suy ra \(x = 5\,\,{\rm{m}}\)

Vậy diện tích nhỏ nhất có thể giăng là .\(120\,\,{{\rm{m}}^{\rm{2}}}{\rm{.}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai (2,0 điểm)

 Giải hệ phương trình \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\) bằng phương pháp cộng đại số theo các bước:

a) Nhân hai vế của phương trình thứ hai với 2, ta được: \(\left\{ \begin{array}{l}2x - 6y = 5\\2x - 6y = 4.\end{array} \right.\)

b) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được \(0x = 1\).

c) Phương trình \(0x = 1\)số nghiệm.

d) Nghiệm tổng quát của hệ phương trình đã cho là \(\left( {6y + 5;\,\,2x - 4} \right)\) với \(x \in \mathbb{R}\) tùy ý.

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Đúng.    c) Sai.        d) Sai.

Giải hệ phương trình đã cho bằng phương pháp cộng đại số như sau:

Nhân hai vế của phương trình thứ hai với 2, ta được: 

 2x6y=52x6y=4.

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ, ta được:

\(0x + 0y = 1\) hay \(0x = 1\).

Phương trình trên vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

Lời giải

Hướng dẫn giải

a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). (ảnh 2)

Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của con dốc là 32 m.

b) Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

Câu 3

A. 5.                              
B. \(1\).                         
C. \( - 5\).                      
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne 2.\)                
B. \(x \ne 3.\)                
C. \(x \ne - 2;x \ne 3.\) 
D. \(x \ne - 3;x \ne 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(x\left( {x - 1} \right) = 0\).                         
B. \(x\left( {x + 1} \right) = 0\).                             
C. \(x = 0\).                   
D. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 2x + 3y = 5.\]     
B. \[2x + 3y = 5.\]         
C. \[3x--2y = 5.\]          
D. \[2x--3y = 5.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP