Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d)
Cho \(\Delta ABC\) có các đường phân giác \(AD,\;BE,\;CF\;\left( {D \in BC,\;E \in AC,\;F \in AB} \right).\)
a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Phần II. Trắc nghiệm đúng, sai
(Gồm 5 câu hỏi, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d)
Cho \(\Delta ABC\) có các đường phân giác \(AD,\;BE,\;CF\;\left( {D \in BC,\;E \in AC,\;F \in AB} \right).\)
a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Quảng cáo
Trả lời:
a) Sai.
Vì \(BI\) là tia phân giác của \(\widehat {ABD}\) trong \(\Delta ABD\) nên \(\frac{{IA}}{{ID}} = \frac{{BA}}{{BD}}.\)
b) Đúng.
Vì \(\frac{{IA}}{{ID}} = \frac{{BA}}{{BD}}\) nên \(\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}}.\)
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}} = \frac{{IA + ID}}{{AB + BD}} = \frac{{AD}}{{AB + BD}}.\)
Suy ra \(\frac{{ID}}{{BD}} = \frac{{AD}}{{AB + BD}}.\)
Vậy \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
c) Đúng.
Vì \(CI\) là tia phân giác của \(\widehat {ACD}\) trong \(\Delta ACD\) nên \(\frac{{IA}}{{ID}} = \frac{{CA}}{{CD}}.\) Suy ra: \(\frac{{IA}}{{CA}} = \frac{{ID}}{{CD}}.\)
Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{IA}}{{CA}} = \frac{{ID}}{{CD}} = \frac{{IA + ID}}{{CA + CD}} = \frac{{AD}}{{CA + CD}}.\)
Vậy \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
d) Sai.
Vì \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}} = \frac{{AB + BD}}{{BD}}\) nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}} = \frac{{AB + BD}}{{BD}} = \frac{{CA + CD + AB + BD}}{{CD + BD}} = \frac{{CA + AB + BC}}{{BC}}.\)
Vậy \(\frac{{DI}}{{DA}} = \frac{{BC}}{{AB + BC + CA}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2,3\)

Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)
Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)
Lời giải
Đáp án: \(40\)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\) nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\) nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)
Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)
Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)
Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.
Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)
Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)
Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)
Câu 3
A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\widehat {DAC} = 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.