Câu hỏi:

22/09/2025 87 Lưu

Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)

         a) \(AI > AE.\)

         b) \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)

         c) \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)

         d) \(EC = 3IH.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
         a) \(AI > AE.\)           b) \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)           c) \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)           d) \(EC = 3IH.\) (ảnh 1)

a) Sai.

\(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB}.\)

\(BE\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABI} = \widehat {IBH} = \frac{1}{2}\widehat {ABC}.\)

\(\Delta BIH\) vuông tại \(H\) nên: \(\widehat {BIH} + \widehat {HBI} = 90^\circ \) suy ra \(\widehat {BIH} = 90^\circ - \widehat {HBI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

\(\widehat {BIH} = \widehat {AIE}\) (hai góc đối đỉnh) nên \(\widehat {AIE} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

\(\Delta ABE\) vuông tại \(A\) nên: \(\widehat {IEA} + \widehat {ABI} = 90^\circ \) suy ra \(\widehat {IEA} = 90^\circ - \widehat {ABI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

Do đó, \(\widehat {AIE} = \widehat {IEA}.\) Do đó, \(\Delta IAE\) cân tại \(A.\) Do đó, \(AI = AE.\)

b) Đúng.

\(BI\) là tia phân giác của \(\widehat {ABH}\) trong tam giác \(ABH\) nên \(\frac{{AI}}{{IH}} = \frac{{AB}}{{BH}}.\) Suy ra \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)

c) Đúng.

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong tam giác \(\Delta ABC\) nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{BC}}.\) Suy ra \(\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}}.\)

\(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}},\;\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}},\;AI = AE\) nên \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)

d) Sai.

\(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}\) nên \(EC = \frac{{BC \cdot HI}}{{BH}}.\)

\(\Delta ABC\) vuông cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến của \(\Delta ABC.\)

Do đó, \(BC = 2BH.\) Suy ra: \(EC = \frac{{2BH \cdot HI}}{{BH}} = 2HI.\) Vậy \(EC = 2IH.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2,3\)

Cho \(\Delta ABC\) có \(AB = 5\;{\rm{cm}},\;AC = 6\;{\rm{cm}},\;BC = 8\;{\rm{cm}}.\) Tia phân giác góc \(B\) cắt \(AC\) tại \(E.\) Độ dài đoạn thẳng \(AE\) bằng bao nhiêu \({\rm{cm?}}\) (ảnh 1)

Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)

Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án: \(40\)

Cho \(\Delta ABC\) có \(AB = AC = 12\;{\rm{cm}}{\rm{.}}\) Tia phân giác của góc \(B\) cắt đường cao \(AH\;\left( {H \in BC} \right)\) của \(\Delta ABC\) tại \(I.\) Biết rằng \(\frac{{AI}}{{AH}} = \frac{3}{5}.\) Tính chu vi \(\Delta ABC.\) (ảnh 1)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\)  nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)

Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\)  nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)

Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)

Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)

Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.

Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)

Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)

Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)

B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)   
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {DAC} = 60^\circ .\)  

B. \(\widehat {DAC} = 40^\circ .\)
C. \(\widehat {DAC} = 50^\circ .\) 
D. \(\widehat {DAC} = 45^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP