Câu hỏi:

18/09/2025 371 Lưu

Cho hai đa thức:

\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).

 a) Đa thức \(A\) có bậc là 2.

 b) Đa thức \(B\) không chia hết cho 6.

 c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).

 d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:               a) S.            b) S.           c) Đ.           d) S.

Đa thức \(A\) có bậc là 3. Do đó ý a) sai.

Ta có \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\)

\[ = 3y \cdot 3y - 3y \cdot x - 2{x^2}{y^2}:\left( {\frac{2}{3}xy} \right) - 6x{y^3}:\left( {\frac{2}{3}xy} \right) + 4xy:\left( {\frac{2}{3}xy} \right)\]

\[ = 9{y^2} - 3xy - 3xy - 9{y^2} + 6\]

\[ = \left( {9{y^2} - 9{y^2}} \right) + \left( { - 3xy - 3xy} \right) + 6\]

\[ = - 6xy + 6 = 6\left( { - xy + 1} \right).\]

\(6\left( { - xy + 1} \right)\, \vdots \,\,6\) với mọi giá trị nguyên của \(x,y\) nên \(B\) luôn chia hết cho 6 với mọi giá trị nguyên của biến \(x,y.\) Do đó ý b) sai.

Thay \(x = \frac{1}{2};\) \(y = 4\) vào biểu thức \(A = - 6xy + 6\) đã thu gọn được ở câu a, ta được:

\(A = - 6 \cdot \frac{1}{2} \cdot 4 + 6 = - 12 + 6 = - 6.\)

Vậy \(A = - 6\) khi \(x = \frac{1}{2};\) \(y = 4.\) Do đó ý c) sai.

Tổng của hai đa thức \(A\) và \(B\) là:

\[A + B = \left( {{x^2}y + 5xy - 1} \right) + \left( { - 6xy + 6} \right)\]

\[ = {x^2}y + 5xy - 1 - 6xy + 6\]

\[ = {x^2}y + \left( {5xy - 6xy} \right) + \left( {6 - 1} \right)\]

\[ = {x^2}y - xy + 5.\]

Như vậy, tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 5. Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 30.

Xét tứ giác \(ABCD\) có \(\widehat {BAD} + \widehat B + \widehat {BCD} + \widehat D = 360^\circ \).

Suy ra \(\frac{{7x}}{2} + 4x + 135^\circ = 360^\circ \) hay \(\frac{{15x}}{2} = 225^\circ \) nên \(x = 30^\circ .\)

Lời giải

Đáp số: 1.

Ta có \(B - \left( {5{x^2} - 2xyz} \right) = 2{x^2} + 2xyz + 1\)

Suy ra \[B = \left( {2{x^2} + 2xyz + 1} \right) + \left( {5{x^2} - 2xyz} \right)\]

\( = 2{x^2} + 2xyz + 1 + 5{x^2} - 2xyz\)

\( = \left( {2{x^2} + 5{x^2}} \right) + \left( {2xyz - 2xyz} \right) + 1 = 7{x^2} + 1\).

Do đó, hạng tử tự do của đa thức \(B\) là 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP