Câu hỏi:

18/09/2025 14 Lưu

Cho hình vẽ, biết \[\widehat B + \widehat D = 135^\circ \,,\,\,\widehat {BAD} = \frac{{7x}}{2}\].

Cho hình vẽ, biết góc B + góc D = 135 độ, góc BAD = 7x/2 (ảnh 1)

Tính số đo góc \[\widehat {{C_1}}\] (đơn vị: độ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: 30.

Xét tứ giác \(ABCD\) có \(\widehat {BAD} + \widehat B + \widehat {BCD} + \widehat D = 360^\circ \).

Suy ra \(\frac{{7x}}{2} + 4x + 135^\circ = 360^\circ \) hay \(\frac{{15x}}{2} = 225^\circ \) nên \(x = 30^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A, trung tuyến AM, I là trung điểm AC. Gọi N là điểm đối xứng của M qua I. Gọi E, K lần lượt là trung điểm AM, AB (ảnh 1)

Đáp án:               a) S.            b) Đ.           c) Đ.           d) S.

Do \[N\] là điểm đối xứng của \[M\] qua \[I\] nên \(I\) là trung điểm của \(MN.\)

Xét tứ giác \(AMCN\)\(I\) là trung điểm của hai đường chéo \(AC,MN\) nên \(AMCN\) là hình bình hành.

Tam giác \(ABC\) cân tại \(A\) có đường trung tuyến \(AM\) nên \(AM\) là đường cao của tam giác hay \(\widehat {AMC} = 90^\circ \).

Hình bình hành \(AMCN\)\(\widehat {AMC} = 90^\circ \) nên \(AMCN\) là hình chữ nhật. Do đó ý a) sai.

Do \(AMCN\) là hình chữ nhật nên \(AN\,{\rm{//}}\,MC\)\(AN = MC.\)

Lại có \(M\) là trung điểm của \(BC\) nên \(MB = MC\).

Do đó \(AN = MB\,\,\left( { = MC} \right)\).

Xét tứ giác \(ANMB\)\(AN\,{\rm{//}}\,MB\) (do \(AN\,{\rm{//}}\,MC)\)\(AN = MB\) nên \(ANMB\) là hình bình hành.

Do đó hai đường chéo \[AM,BN\] cắt nhau tại trung điểm của mỗi đường.

Lại có \(E\) là trung điểm của \(AM\) nên \(E\) cũng là trung điểm của \(BN\). Do đó ý b) đúng.

Do tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\).

Lại có \(K,I\) lần lượt là trung điểm của \(AB,AC\) nên \(AK = BK = \frac{1}{2}AB\)\(AI = CI = \frac{1}{2}AC\)

Do đó \(AK = AI.\) Do đó ý c) đúng.

Tứ giác \(ANCM\) là hình chữ nhật nên \(AC = MN\)\(I\) là trung điểm của \(AC,MN.\)

Suy ra \(AI = MI.\)

Do đó \(AK = MI = AI\).

Ta có: \(ANMB\) là hình bình hành nên \(AB\,{\rm{//}}\,MN\) hay \(AK\,{\rm{//}}\,MI\).

Tứ giác \(AKMI\)\(AK = MI\)\(AK\,{\rm{//}}\,MI\) nên \(AKMI\) là hình bình hành.

Lại có \(AK = AI\) nên \(AKMI\) là hình thoi.

Để \(AKMI\) là hình vuông thì cần thêm điều kiện \(\widehat {KAI} = 90^\circ \), khi đó tam giác \(ABC\) vuông tại \(A\).

Vậy để \(AKMI\) là hình vuông thì tam giác \(ABC\) là tam giác vuông cân tại \(A\).

Thật vậy, khi tam giác \(ABC\) là tam giác vuông cân tại \(A\) ta dễ dàng chứng minh được \(AKMI\) là hình thoi có \(\widehat {KAI} = 90^\circ \) nên là hình vuông. Do đó ý d) sai.

Lời giải

Đáp án:               a) Đ.           b) S.           c) Đ.           d) S.

Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC (ảnh 1)

Vì \[\Delta ABC\] cân tại \[A\]\[AH\] là đường cao nên đồng thời là đường trung tuyến, do đó \[H\] là trung điểm của \[BC\], suy ra \[BH = HC\]. Do đó ý a) đúng.

Tứ giác \[AHBD\]\[M\] là trung điểm của \[AB\]\[HD\] nên là hình bình hành.

Do \[AH\] là đường cao của \[\Delta ABC\] nên \[AH \bot BC\], suy ra \[\widehat {AHB} = 90^\circ \].

Hình bình hành \[AHBD\]\[\widehat {AHB} = 90^\circ \] nên \[AHBD\] là hình chữ nhật. Do đó ý b) sai.

Tương tự, tứ giác \[AHCE\]\[N\] là trung điểm của \[AC\]\[HE\] nên là hình bình hành.

Lại có \[\widehat {AHC} = 90^\circ \] nên \[AHCE\] là hình chữ nhật.

\[ADBH,{\rm{ }}AECH\] là các hình chữ nhật nên \[AD = BH,{\rm{ }}AE = HC,{\rm{ }}AD{\rm{ // }}BC,{\rm{ }}AE{\rm{ // }}BC\].

\[\Delta ABC\] cân tại \[A\]\[AH\] là đường cao nên đồng thời là đường trung tuyến, do đó \[H\] là trung điểm của \[BC\], suy ra \[BH = HC\].

Từ đó, \[AD = BH = HC = AE\].

Tứ giác \[ADHC\] có: \[AD{\rm{ // }}HC,{\rm{ }}AD = HC\] nên \[ADHC\] là hình bình hành.

Tứ giác \[ABHE\] có: \[AE{\rm{ // }}BH,{\rm{ }}AE = BH\] nên \[ABHE\] là hình bình hành.

\[ADHC\] và \[AEHB\] là hình bình hành nên \[CD\] và \[BE\] lần lượt cắt \[AH\] tại trung điểm của \[AH\].

Như vậy, giao điểm của \[BE\]\[CD\] là trung điểm của \[AH\]. Do đó ý c) đúng.

Do \[AHBD,{\rm{ }}AHCE\] là các hình chữ nhật nên \[AB = DH,{\rm{ }}AC = HE\] (hai đường chéo bằng nhau).

\[AB = AC\] (do \[\Delta ABC\] cân tại \[A\]) nên \[DH = HE\].

Do \[BCED\] là hình chữ nhật nên \[CD = BE\] (hai đường chéo bằng nhau).

Do đó ý d) sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP