Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\)
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AE = AD.\)
c) Tứ giác \(AEFD\) là hình thoi.
d) Diện tích tứ giác \(ABCD\) gấp hai lần diện tích tứ giác \(AEFD\).
Cho tứ giác \(ABCD\) có \(AB = CD,\;AB\;{\rm{//}}\;CD,\;AB = 2AD.\) Gọi \(E,\;F\) lần lượt là trung điểm của \(AB,\;DC.\)
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AE = AD.\)
c) Tứ giác \(AEFD\) là hình thoi.
d) Diện tích tứ giác \(ABCD\) gấp hai lần diện tích tứ giác \(AEFD\).
Quảng cáo
Trả lời:


a) Sai.
Tứ giác \(ABCD\) có: \(AB = CD,\;AB\;{\rm{//}}\;CD.\) Do đó, tứ giác \(ABCD\) là hình bình hành.
b) Đúng.
Vì \(E\) là trung điểm của \(AB\) nên \(AB = 2AE.\) Mà \(AB = 2AD\;\left( {gt} \right)\) nên \(AE = AD.\)
c) Đúng.
Vì \(F\) là trung điểm của \(CD\) nên \(CD = 2DF.\) Mà \(AB = CD\;\left( {gt} \right),\;AB = 2AE\;\left( {cmt} \right)\) nên \(AE = DF.\)
Tứ giác \(AEFD\) có: \(AE = DF,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEFD\) là hình bình hành.
Mà \(AE = AD\;\left( {cmt} \right)\) nên tứ giác \(AEFD\) là hình thoi.
d) Đúng.
Ta chứng minh được \(EBCF\) là hình thoi.
Nhận thấy, hai hình thoi \(EBCF\) và \(AEFD\) có độ dài các cạnh bằng nhau.
Do đó, \({S_{EBCF}} = {S_{AEFD}}\).
Lại có, \({S_{EBCF}} + {S_{AEFD}} = {S_{ABCD}}\) hay \(2{S_{EBCF}} = {S_{ABCD}}\) nên \({S_{AEFD}} = \frac{1}{2}{S_{ABCD}}\).
Vậy diện tích tứ giác \(ABCD\) gấp hai lần diện tích tứ giác \(AEFD\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 75

Vì chu vi hình thoi là 24 cm nên độ dài cạnh của hình thoi đó là: \(24:4{\rm{ }} = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).
Xét tam giác \(AHB,\) có \(AH = \frac{1}{2}AB\) nên \(\widehat {ABH} = 30^\circ \) (tính chất).
Suy ra \(\widehat {DAB} = 180^\circ - \widehat {ABC} = 180^\circ - 30^\circ = 150^\circ \) (Do \(ABCD\) là hình thoi)
Suy ra \(\widehat {DAB} = \widehat {DCB} = 150^\circ \) và \(\widehat {ABC} = \widehat {CDA} = 30^\circ \).
Lại có, \(CA\) tia phân giác của \(\widehat {DCB}\) nên ta có \(\widehat {DCA} = \widehat {ACB} = \frac{1}{2}\widehat {DCB} = \frac{1}{2} \cdot 150^\circ = 75^\circ \).
Lời giải
Đáp án: \(150\)
Tứ giác \(ABCD\) có \(O\) là giao điểm của \(AC\) và \(BD.\) \(O\) là trung điểm của \(AC\) và \(BD.\)
Do đó, tứ giác \(ABCD\) là hình bình hành. Suy ra \(DC = AB = 150\;{\rm{m}}{\rm{.}}\) Vậy \(AB = 150\;{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.