Câu hỏi:

19/09/2025 10 Lưu

Bác An có một khu vườn, bác chia khu vườn thành hai phần như hình vẽ:

Phần màu nâu dùng để trồng rau có diện tích là \(30\;{{\rm{m}}^2}.\) Phần màu xanh dùng để trồng cây ăn quả.  Biết rằng \(AD = 4\;{\rm{m}},\;BC = 10\;{\rm{m}}.\) Hỏi độ dài \(AB\) bằng bao nhiêu mét? (ảnh 1)

Phần màu nâu dùng để trồng rau có diện tích là \(30\;{{\rm{m}}^2}.\) Phần màu xanh dùng để trồng cây ăn quả.

Biết rằng \(AD = 4\;{\rm{m}},\;BC = 10\;{\rm{m}}.\) Hỏi độ dài \(AB\) bằng bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(10\)

Tứ giác \(ABED\) có: \(\widehat A = \widehat B = \widehat {BED} = \widehat {EDA} = 90^\circ \) nên tứ giác \(ABED\) là hình chữ nhật.

Do đó, \(EB = AD = 4\;{\rm{m}}{\rm{,}}\;AB = DE.\)

Ta có: \(EC = CB - BE = 10 - 4 = 6\;\left( {\rm{m}} \right).\)

Diện tích tam giác \(DEC\) vuông tại \(E\) bằng \(30\;{{\rm{m}}^2}\) nên  \(\frac{1}{2} \cdot EC \cdot DE = 30\).

Suy ra \(\frac{1}{2} \cdot 6 \cdot DE = 30\), do đó \(DE = 10\;{\rm{m}}.\)

Do đó, \(AB = DE = 10\;{\rm{m}}.\) Vậy \(AB = 10\;{\rm{m}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(5\)

Vì chu vi hình chữ nhật \(ABCD\) bằng \(14\;{\rm{cm}}\) nên \(2\left( {DC + AD} \right) = 14\;{\rm{cm}}\) nên \(AD + DC = 7\;{\rm{cm}}{\rm{.}}\)

Vì chu vi tam giác \(ACD\) bằng \(12\;{\rm{cm}}\) nên \(DC + AD + AC = 12\;\left( {{\rm{cm}}} \right).\)

Do đó, \(7 + AC = 12\) hay \(AC = 5\;{\rm{cm}}{\rm{.}}\)

Vì tứ giác \(ABCD\) là hình chữ nhật nên \(BD = AC = 5\;{\rm{cm}}{\rm{.}}\) Vậy \(BD = 5\;{\rm{cm}}{\rm{.}}\)

Lời giải

Cho hình chữ nhật \(ABCD\) hai đường chéo cắt nhau tại \(O.\) Gọi \(M,\;N\) lần lượt là trung điểm của \(AB,\;BC.\)  a) \(\widehat {OMB} = \widehat {ONB} = 90^\circ .\) (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\) là hình chữ nhật nên \(OA = OB = OC = OD = \frac{1}{2}AC = \frac{1}{2}BD.\)

Do đó, tam giác \(AOB\) cân tại \(O\) và tam giác \(COB\) cân tại \(O.\)

Tam giác \(AOB\) cân tại \(O\) nên \(OM\) là đường trung tuyến đồng thời là đường cao của tam giác đó. Do đó, \(\widehat {OMB} = 90^\circ .\)

Tam giác \(COB\) cân tại \(O\) nên \(ON\) là đường trung tuyến đồng thời là đường cao của tam giác đó. Do đó, \(\widehat {ONB} = 90^\circ .\)

b) Đúng.

Tứ giác \(OMBN\) có: \(\widehat {MBN} = \widehat {OMB} = \widehat {ONB} = 90^\circ .\) Do đó, tứ giác \(OMBN\) là hình chữ nhật.

c) Sai.

Vì tứ giác \(OMBN\) là hình chữ nhật nên \(MN = OB.\) Mà \(OB = \frac{1}{2}AC\) nên \(MN = \frac{1}{2}AC.\)

d) Đúng.

Gọi \(K\) là giao điểm của \(OB\) và \(MN.\) Vì tứ giác \(OMBN\) là hình chữ nhật nên \(KM = KB.\)

Do đó, tam giác \(KMB\) cân tại \(K.\) Do đó, \(\widehat {KMB} = \widehat {KBM}.\)

Vì tam giác \(AOB\) cân tại \(O\) nên \(\widehat {OAB} = \widehat {OBA}.\) Do đó, \(\widehat {OAB} = \widehat {KMB}.\)

Mà hai góc này ở vị trí đồng vị nên \(MN\,{\rm{//}}\,AC.\)