Cho hình thoi \(ABCD\) có \(\widehat A = 60^\circ \), kẻ \(BH \bot AD{\rm{ }}\left( {H \in AD} \right)\), rồi kéo dài một đoạn \(HE = HB.\) Nối \(E\) với \(A\), \(E\) với \(D\).
a) \(H\) là trung điểm của \(AD\).
b) \(ABDE\) là hình thoi.
c) \(D\) là trung điểm \(CE.\)
d) \(AC > BE.\)
Cho hình thoi \(ABCD\) có \(\widehat A = 60^\circ \), kẻ \(BH \bot AD{\rm{ }}\left( {H \in AD} \right)\), rồi kéo dài một đoạn \(HE = HB.\) Nối \(E\) với \(A\), \(E\) với \(D\).
a) \(H\) là trung điểm của \(AD\).
b) \(ABDE\) là hình thoi.
c) \(D\) là trung điểm \(CE.\)
d) \(AC > BE.\)
Quảng cáo
Trả lời:


a) Đúng.
Ta có: \(AB = AD\) (vì \(ABCD\) là hình thoi) và \(\widehat A = 60^\circ \).
Suy ra \(\Delta ABD\) là tam giác đều.
Mà \(BH\) là đường cao trong \(\Delta ABD\) nên đồng thời là đường trung tuyến do đó \(H\) là trung điểm của \(AD\).
b) Đúng.
Xét tứ giác \(ABDE\) có hai đường chéo \(BE\) và \(AD\) cắt nhau tại trung điểm \(H\) của mỗi đường.
Do đó, \(ABDE\) là hình bình hành.
Mặt khác \(AD \bot BE\) nên \(ABDE\) là hình thoi.
c) Đúng.
Ta có:
\(ABCD\) là hình thoi suy ra \(DC = AB,DC\parallel AB\). (1)
\(ABDE\) là hình thoi suy ra \(DE = AB,DE\parallel AB\). (2)
Từ (1) và (2) suy ra \(C,D,E\) thẳng hàng (tiền đề Euclid) và \(DC = DE.\)
Vậy \(D\) là trung điểm của \(CE\).
d) Sai.
Kẻ hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(I\).
Suy ra \(AC\) vuông góc \(BD\) tại trung điểm \(I\) của mỗi đường (Do \(ABCD\) là hình thoi).
Ta có: \(AC = 2AI\) (vì \(I\) là trung điểm của \(AC\)).
\(BE = 2BH\) (vì \(H\) là trung điểm của \(BE\)).
Mà \(BH = AI\) (Chứng minh \(\Delta BHA = \Delta AIB\) (ch – gn)) suy ra \(AC = BE.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 99
![Cho tứ giác \(ABCD\) có \(AB\parallel CD,\) \[\widehat {ABC} = 135^\circ ,{\rm{ }}\widehat {ACB} = 24^\circ ,{\rm{ }}\widehat {ADC} = 60^\circ \]. Hỏi số đo của \(\widehat {DAC}\) bằng bao nhiêu độ? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/blobid10-1758246792.png)
Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta có;
\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 21^\circ \).
Vì \(AB\parallel CD\) nên \(\widehat {BAC} = \widehat {ACD} = 21^\circ \) (so le trong).
Xét tam giác \(ACD\) có: \(\widehat {ACD} + \widehat {ADC} + \widehat {CAD} = 180^\circ \) (tổng ba góc trong một tam giác).
Do đó, \(\widehat {CAD} = 180^\circ - \left( {\widehat {ACD} + \widehat {ADC}} \right) = 180^\circ - \left( {60^\circ + 21^\circ } \right) = 99^\circ \).
Vậy \(\widehat {DAC} = 99^\circ \).
Lời giải

a) Sai.
Xét \(\Delta ADH\) và \(\Delta CKB\), có:
\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)
\(AD = BC\) (gt)
Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).
b) Đúng.
Vì \(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).
Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).
Do đó, \(AKCH\) là hình bình hành.
Suy ra \(AK\parallel CH\).
c) Đúng.
Vì \(M\) là giao điểm của \(AK\) và \(BC\), \(N\) là giao điểm của \(CH\) và \(AD\) nên ta có:
\(AM\parallel CN\) và \(AN\parallel CM\).
Suy ra \(AMCN\) là hình bình hành.
Do đó, \(AM = CN\).
d) Đúng.
Vì \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).
Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\) và \(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.
Câu 3
A. \(110^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(ABCD\) là hình bình hành.
B. \(\Delta ABC = \Delta CDA\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Có hai đường chéo bằng nhau.
B. Có hai đường chéo vuông góc.
C. Có hai góc kề một đáy bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(25^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.