Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) và các mặt bên là những tam giác đều. Tính diện tích xung quanh và thể tích của hình chóp.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) và các mặt bên là những tam giác đều. Tính diện tích xung quanh và thể tích của hình chóp.
Quảng cáo
Trả lời:

Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và các mặt bên là những tam giác đều nên là hình chóp đều.
⦁ Gọi \(M\) là trung điểm của \(CD.\) Khi đó \(CM = \frac{1}{2}CD = \frac{1}{2}a\).
Tam giác \(SCD\) đều nên đường trung tuyến \(SM\) đồng thời là đường cao nên \(SM \bot CD\), do đó \(\Delta SCM\) vuông tại \(M.\)
Áp dụng định lí Pythagore ta có \(S{C^2} = S{M^2} + C{M^2}\)
Suy ra \(S{M^2} = S{C^2} - C{M^2} = {a^2} - {\left( {\frac{1}{2}a} \right)^2} = \frac{3}{4}{a^2}.\) Do đó \(SM = \frac{{a\sqrt 3 }}{2}.\)
Diện tích xung quanh của hình chóp đều \(S.ABCD\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot \frac{{a\sqrt 3 }}{2} = {a^2}\sqrt 3 \) (đvdt).
⦁ Do \(ABCD\) là hình vuông cạnh \(a\) nên \(\Delta ADC\) vuông tại \(D\) có \(AD = DC = a,\) áp dụng định lí Pythagore ta có: \(A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2}.\) Do đó \(AC = a\sqrt 2 .\)
Vì \(SO\) là đường cao của hình chóp đều \(S.ABCD\) với \(ABCD\) là hình vuông nên \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\)
Do đó \(O\) là trung điểm của \(AC\) nên \(OA = \frac{1}{2}AC = \frac{1}{2} \cdot a\sqrt 2 = \frac{{a\sqrt 2 }}{2}.\)
Các mặt bên của hình chóp là các tam giác đều nên \(SA = AD = a.\)
Xét \(\Delta SAO\) vuông tại \(O,\) áp dụng định lí Pythagore ta có: \(S{A^2} = S{O^2} + A{O^2}\)
Suy ra \(S{O^2} = S{A^2} - A{O^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = {a^2} - \frac{1}{2}{a^2} = \frac{1}{2}{a^2}.\) Do đó \(SO = \frac{a}{{\sqrt 2 }}.\)
Thể tích của hình chóp đều \(S.ABCD\) là:
\(V = \frac{1}{3} \cdot {a^2} \cdot \frac{a}{{\sqrt 2 }} = \frac{{{a^3}}}{{3\sqrt 2 }}\) (đvtt).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
![Tứ giác \[ADHE\] là hình gì? Vì sao? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/26-1758293616.png)
a) Vì \(\Delta ABC\) vuông tại \(A\) nên \(\widehat {BAC} = 90^\circ \) hay \(\widehat {DAE} = 90^\circ \).
Ta có \(HD \bot AB\); \(HE \bot AC\) nên \(\widehat {HDA} = 90^\circ \); \(\widehat {HEA} = 90^\circ \).
Tứ giác \(ADHE\) có \[\widehat {DAE} = \widehat {HDA} = \widehat {HEA} = 90^\circ \] nên tứ giác \(ADHE\) là hình chữ nhật.
b) Xét \(\Delta AHD\) vuông tại \(D\), áp dụng định lý Pythagore, ta có: \(A{H^2} = A{D^2} + D{H^2}\)
Suy ra \(D{H^2} = A{H^2} - A{D^2} = {5^2} - {4^2} = 9\). Do đó \(DH = 3\,\,\left( {{\rm{cm}}} \right){\rm{.}}\)
Tứ giác \(ADHE\) là hình chữ nhật nên ta có: \({S_{ADHE}} = AD\,.\,DH = 4\,.\,3 = 12\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích tứ giác \(ADHE\) bằng \(12\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
c) Xét tứ giác \(BKIH\) có \(D\) là trung điểm của hai đường chéo \(BI\) và \(HK\) nên \(BKIH\) là hình bình hành (dấu hiệu nhận biết).
Do đó \(KI\,{\rm{//}}\,BH.\)
Mà \(AH \bot BH\) suy ra \(KI \bot AH.\)
Xét \(\Delta AHK\) có hai đường cao \(AD,\,\,KI\) \(\left( {AD \bot KH;\,\,KI \bot AH} \right)\) cắt nhau tại \(I\) nên \(I\) là trực tâm của tam giác \(AKH\), suy ra \(HI \bot AK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



