Cho hình chữ nhật \(ABCD\), kẻ \(AH,CK\) vuông góc với \(BD\) \(\left( {H,\,\,K \in BD} \right)\).
a) Chứng minh \(DH = BK\).
b) Chứng minh tứ giác \(AHCK\) là hình bình hành.
c) Gọi \(E\) là điểm đối xứng với \(A\) qua \(H\). Chứng minh \(DECB\) là hình thang cân.
Cho hình chữ nhật \(ABCD\), kẻ \(AH,CK\) vuông góc với \(BD\) \(\left( {H,\,\,K \in BD} \right)\).
a) Chứng minh \(DH = BK\).
b) Chứng minh tứ giác \(AHCK\) là hình bình hành.
c) Gọi \(E\) là điểm đối xứng với \(A\) qua \(H\). Chứng minh \(DECB\) là hình thang cân.
Quảng cáo
Trả lời:

Xét \(\Delta AHD\) vuông tại \(H\) và \(\Delta CKB\) vuông tại \(K\) có:
\(AD = BC\) và \(\widehat {ADH} = \widehat {CBK}\) (so le trong của \(AD\,{\rm{//}}\,BC).\)
Do đó \(\Delta AHD = \Delta CKB\) (cạnh huyền – góc nhọn).
Suy ra \(DH = BK\) (hai cạnh tương ứng).b) Ta có \(\Delta AHD = \Delta CKB\) (câu a) nên \(AH = CK\).
Mặt khác: \(AH \bot BD,\,\,CK \bot BD\) nên \(AH\,{\rm{//}}\,CK\)
Do đó tứ giác \(AHCK\) là hình bình hành (dấu hiệu nhận biết).
c) Ta có: \(AH = HE\) và \(AH = CK\) nên \(HE = CK\)
Mà \(HE\,{\rm{//}}\,CK\) (\(AH\,{\rm{//}}\,CK\) và \(E\) là điểm đối xứng với \(A\) qua \(H\))
Do đó tứ giác \(CKHE\) là hình bình hành. Suy ra \(HK\,{\rm{//}}\,CE\) hay \(BD\,{\rm{//}}\,CE\) (1)
Xét \(\Delta ADE\) có \(DH\) là đường cao, vừa là trung tuyến nên \(\Delta ADE\) cân tại \(D\)
Do đó \(DH\) là đường phân giác của \(\Delta ADE\), nên \(\widehat {ADB} = \widehat {EDB}\)
Mà \(\widehat {ADB} = \widehat {CBD}\) nên \(\widehat {EDB} = \widehat {CBD}\) (2)
Từ (1) và (2), suy ra tứ giác \(CEDB\) là hình thang cân (dấu hiệu nhận biết hình thang cân).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
![Tứ giác \[ADHE\] là hình gì? Vì sao? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/26-1758293616.png)
a) Vì \(\Delta ABC\) vuông tại \(A\) nên \(\widehat {BAC} = 90^\circ \) hay \(\widehat {DAE} = 90^\circ \).
Ta có \(HD \bot AB\); \(HE \bot AC\) nên \(\widehat {HDA} = 90^\circ \); \(\widehat {HEA} = 90^\circ \).
Tứ giác \(ADHE\) có \[\widehat {DAE} = \widehat {HDA} = \widehat {HEA} = 90^\circ \] nên tứ giác \(ADHE\) là hình chữ nhật.
b) Xét \(\Delta AHD\) vuông tại \(D\), áp dụng định lý Pythagore, ta có: \(A{H^2} = A{D^2} + D{H^2}\)
Suy ra \(D{H^2} = A{H^2} - A{D^2} = {5^2} - {4^2} = 9\). Do đó \(DH = 3\,\,\left( {{\rm{cm}}} \right){\rm{.}}\)
Tứ giác \(ADHE\) là hình chữ nhật nên ta có: \({S_{ADHE}} = AD\,.\,DH = 4\,.\,3 = 12\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích tứ giác \(ADHE\) bằng \(12\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
c) Xét tứ giác \(BKIH\) có \(D\) là trung điểm của hai đường chéo \(BI\) và \(HK\) nên \(BKIH\) là hình bình hành (dấu hiệu nhận biết).
Do đó \(KI\,{\rm{//}}\,BH.\)
Mà \(AH \bot BH\) suy ra \(KI \bot AH.\)
Xét \(\Delta AHK\) có hai đường cao \(AD,\,\,KI\) \(\left( {AD \bot KH;\,\,KI \bot AH} \right)\) cắt nhau tại \(I\) nên \(I\) là trực tâm của tam giác \(AKH\), suy ra \(HI \bot AK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



