Tìm giá trị nhỏ nhất của các biểu thức sau:
d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\).
d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\).
Quảng cáo
Trả lời:
d) \(D = \left( {x - 3} \right)\left( {x - 5} \right)\left( {{x^2} - 8x + 17} \right)\)
\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {\left( {{x^2} - 8x + 16} \right) + 1} \right]\)
\( = \left( {x - 3} \right)\left( {x - 5} \right)\left[ {{{\left( {x - 4} \right)}^2} + 1} \right]\)
Đặt \(t = x - 4\) suy ra \(x - 3 = t + 1\) và \(x - 5 = t - 1\).
Khi đó, ta có:
\(D = \left( {t + 1} \right)\left( {t - 1} \right)\left( {{t^2} + 1} \right)\)\( = \left( {{t^2} - 1} \right)\left( {{t^2} + 1} \right) = {t^4} - 1.\)
Vì \({t^4} \ge 0\) với mọi \(t\) nên \(D \ge - 1\).
Dấu xảy ra khi \(t = 0\) hay \(x = 4\).
Vậy giá trị nhỏ nhất của biểu thức \(D\) là \( - 1\) khi \(x = 4\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
Hướng dẫn giải
Vì tấm lưới dài \(500\,\,{\rm{m}}\), hay chính là chu vi của mảnh vườn hình chữ nhật \(ABCD\) trừ khu nhà kho \[EF = 100\,\,{\rm{m}}\] bằng \(500\,\,{\rm{m}}\).
Suy ra chu vi của mảnh vườn là \(600\,\,{\rm{m}}\), nên nửa chu vi mảnh vườn là \(300{\rm{\;m}}.\)
Do đó chiều rộng của mảnh vườn rào được theo chiều dài \(x{\rm{\;(m)}}\) là: \(300 - x{\rm{\;(m)}}{\rm{.}}\)
Diện tích mảnh vườn hình chữ nhật là:
\[S = x \cdot \left( {300 - x} \right)\]\( = - {x^2} + 300x\)
\( = - {x^2} + 2 \cdot x \cdot 150 - {150^2} + {150^2}\)
\( = - {\left( {x - 150} \right)^2} + 22\,\,500\)
Với mọi \(x > 0,\) ta có \({\left( {x - 150} \right)^2} \ge 0\) nên \( - {\left( {x - 150} \right)^2} \le 0\) hay \( - {\left( {x - 150} \right)^2} + 22\,\,500 \le 22\,\,500\).
Dấu “=” xảy ra khi \(x = 150\).
Vậy diện tích mảnh vườn lớn nhất là \(22\,\,500{\rm{\;}}{{\rm{m}}^2}\) khi \(x = 150{\rm{\;m}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



