Câu hỏi:

20/09/2025 63 Lưu

Tìm giá trị nhỏ nhất của các biểu thức sau:

e) \(E = \frac{{14}}{{{x^2} - 2x + 4}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

e) Ta có \(E = \frac{{14}}{{{x^2} - 2x + 4}} = \frac{{14}}{{\left( {{x^2} - 2x + 1} \right) + 3}} = \frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 3 \ge 3\)

Suy ra \(\frac{{14}}{{{{\left( {x - 1} \right)}^2} + 3}} \le \frac{{14}}{3},\) hay \(E \le \frac{{14}}{3}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0,\) tức là \(x = 1.\)

Vậy giá trị lớn nhất của biểu thức \(E\) là \(\frac{{14}}{3}\) tại \(x = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

 

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

Hướng dẫn giải

Vì tấm lưới dài \(500\,\,{\rm{m}}\), hay chính là chu vi của mảnh vườn hình chữ nhật \(ABCD\) trừ khu nhà kho \[EF = 100\,\,{\rm{m}}\] bằng \(500\,\,{\rm{m}}\).

Suy ra chu vi của mảnh vườn là \(600\,\,{\rm{m}}\), nên nửa chu vi mảnh vườn là \(300{\rm{\;m}}.\)

Do đó chiều rộng của mảnh vườn rào được theo chiều dài \(x{\rm{\;(m)}}\) là: \(300 - x{\rm{\;(m)}}{\rm{.}}\)

Diện tích mảnh vườn hình chữ nhật là:

\[S = x \cdot \left( {300 - x} \right)\]\( = - {x^2} + 300x\)

 \( = - {x^2} + 2 \cdot x \cdot 150 - {150^2} + {150^2}\)

 \( = - {\left( {x - 150} \right)^2} + 22\,\,500\)

Với mọi \(x > 0,\) ta có \({\left( {x - 150} \right)^2} \ge 0\) nên \( - {\left( {x - 150} \right)^2} \le 0\) hay \( - {\left( {x - 150} \right)^2} + 22\,\,500 \le 22\,\,500\).

Dấu “=” xảy ra khi \(x = 150\).

Vậy diện tích mảnh vườn lớn nhất là \(22\,\,500{\rm{\;}}{{\rm{m}}^2}\) khi \(x = 150{\rm{\;m}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP