Cho x và y thoả mãn: \[{x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\]. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức \[M = x + y + 6\].
Cho x và y thoả mãn: \[{x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\]. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức \[M = x + y + 6\].
Quảng cáo
Trả lời:

Hướng dẫn giải
Cách 1. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)
\({x^2} + 2xy + {y^2} + 6x + 6y + 9 - 1 = - {y^2}\)
\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} - 1 = - {y^2}\)
\({\left( {x + y + 3} \right)^2} - 1 = - {y^2}\)
\(\left( {x + y + 3 + 1} \right)\left( {x + y + 3 - 1} \right) = - {y^2}\)
\(\left( {x + y + 4} \right)\left( {x + y + 2} \right) = - {y^2}\).
Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\)
Nên \(\left( {x + y + 4} \right)\left( {x + y + 2} \right) \le 0.\)
\(\left( {x + y + 6 - 2} \right)\left( {x + y + 6 - 4} \right) \le 0\)
\(\left( {M - 2} \right)\left( {M - 4} \right) \le 0\) \((*)\)
Với mọi \(x,\,\,y\) và \[M = x + y + 6\] ta lại có \(M - 4 < M - 2\) nên để \((*)\) xảy ra thì \(M - 4 \le 0\) và \(M - 2 \ge 0.\)
⦁ Xét \(M - 4 \le 0\) ta có \(M \le 4\).
Dấu “=” xảy ra khi \(x + y + 2 = 0\) và \(y = 0\), tức là \(x = - 2,\,\,y = 0.\)
⦁ Xét \(M - 2 \ge 0\) ta có \(M \ge 2\).
Dấu “=” xảy ra khi \(x + y + 4 = 0\) và \(y = 0\), tức là \(x = - 4,\,\,y = 0.\)
Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)
Cách 2. Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)
\({x^2} + 2xy + {y^2} + 6x + 6y + 9 = 1 - {y^2}\)
\({\left( {x + y} \right)^2} + 2\left( {x + y} \right) \cdot 3 + {3^2} = 1 - {y^2}\)
\({\left( {x + y + 3} \right)^2} = 1 - {y^2}\)
Với mọi \(x,\,\,y\) ta luôn có \({y^2} \ge 0\) hay \( - {y^2} \le 0\) nên \(1 - {y^2} \le 1\).
Suy ra: \({\left( {x + y + 3} \right)^2} \le 1\), do đó \(\left| {x + y + 3} \right| \le 1\) hay \( - 1 \le x + y + 3 \le 1\)
Vì vậy, \(2 \le x + y + 6 \le 4\)
⦁ Xét \(x + y + 6 \le 4\) hay \(M \le 4\). Dấu “=” xảy ra khi \(x + y + 6 = 4\) và \(y = 0\), tức là \(x = - 2,\,\,y = 0.\)
⦁ Xét \(2 \le x + y + 6\) hay \(M \ge 2\). Dấu “=” xảy ra khi \(x + y + 6 = 2\) và \(y = 0\), tức là \(x = - 4,\,\,y = 0.\)
Vậy GTLN của \(M\) bằng 4 khi \(x = - 2,\,\,y = 0\) và GTNN của \(M\) bằng 2 khi \(x = - 4,\,\,y = 0.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Diện tích đáy hình vuông của chiếc lều là:
Thể tích không khí bên trong chiếc lều là:
b) Diện tích xung quanh của chiếc lều là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19,08 = 28,08\) (m2).
Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.
Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).
Lời giải
a) \(A = {\left( {y + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {y - 3} \right)^2} - {\left( {y + 4} \right)^2}\)
\( = {y^2} + 2y + 1 + {y^2} - 4y + 4 + {y^2} - 6y + 9 - \left( {{y^2} + 8y + 16} \right)\)
\( = 2{y^2} - 16y - 2\)
\( = 2\left( {{y^2} - 8y} \right) - 2\)
\( = 2\left( {{y^2} - 8y + 16} \right) - 32 - 2\)
\( = 2{\left( {y - 4} \right)^2} - 34\)
Vì \({\left( {y - 4} \right)^2} \ge 0\) với mọi \(y\) nên \(2{\left( {y - 4} \right)^2} - 34 \ge - 34\), suy ra \(A \ge - 34\).
Dấu xảy ra khi \(y = 4\).
Vậy giá trị nhỏ nhất của biểu thức \(A\) là \( - 34\) khi \(y = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.