Câu hỏi:

20/09/2025 37 Lưu

Cho ba số thực \(a,\,\,b,\,\,c\) khác \(2\) và thỏa mãn \(a + b + c = 6.\) Tính giá trị của biểu thức:

\(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có: \(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\)\( = \frac{{{{\left( {a - 2} \right)}^3} + {{\left( {b - 2} \right)}^3} + {{\left( {c - 2} \right)}^3}}}{{\left( {a - 2} \right)\left( {b - 2} \right)\left( {c - 2} \right)}}\)

Đặt \(a - 2 = x;\,\,b - 2 = y;\,\,c - 2 = z.\)

Khi đó \(M = \frac{{{x^3} + {y^3} + {z^3}}}{{xyz}}.\)

Mặt khác, từ \(a + b + c = 6\) suy ra \(\left( {a - 2} \right) + \left( {b - 2} \right) + \left( {c - 2} \right) = 0\)

Hay \(x + y + z = 0\)

Suy ra \(x + y = - z\)

\[{\left( {x + y} \right)^3} = {\left( { - z} \right)^3}\]

\({x^3} + {y^3} + 3xy\left( {x + y} \right) = - {z^3}\)

\({x^3} + {y^3} + 3xy\left( { - z} \right) = - {z^3}\)

\({x^3} + {y^3} + {z^3} = 3xyz\)

Do đó \(M = \frac{{{x^3} + {y^3} + {z^3}}}{{xyz}} = \frac{{3xyz}}{{xyz}} = 3.\)

Vậy \(M = 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Diện tích đáy hình vuông của chiếc lều là:

Thể tích không khí bên trong chiếc lều là:

 

b) Diện tích xung quanh của chiếc lều là:

\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {4 \cdot 3} \right) \cdot 3,18 = 19,08{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:

\(S = 9 + 19,08 = 28,08\) (m2).

Do \(28,08 > 20\) nên số tiền mua vải được giảm giá \(5\% \) trên tổng hóa đơn.

Vậy số tiền mua vải là: \(28,08 \cdot 15\,\,000 \cdot \left( {100\% - 5\% } \right) = 400\,\,140\) (đồng).

Lời giải

a) \(A = {\left( {y + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {y - 3} \right)^2} - {\left( {y + 4} \right)^2}\)

\( = {y^2} + 2y + 1 + {y^2} - 4y + 4 + {y^2} - 6y + 9 - \left( {{y^2} + 8y + 16} \right)\)

\( = 2{y^2} - 16y - 2\)

\( = 2\left( {{y^2} - 8y} \right) - 2\)

\( = 2\left( {{y^2} - 8y + 16} \right) - 32 - 2\)

\( = 2{\left( {y - 4} \right)^2} - 34\)

\({\left( {y - 4} \right)^2} \ge 0\) với mọi \(y\) nên \(2{\left( {y - 4} \right)^2} - 34 \ge - 34\), suy ra \(A \ge - 34\).

Dấu xảy ra khi \(y = 4\).

Vậy giá trị nhỏ nhất của biểu thức \(A\)\( - 34\) khi \(y = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP