Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) và các mặt bên là những tam giác đều. Tính diện tích xung quanh và thể tích của hình chóp.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) và các mặt bên là những tam giác đều. Tính diện tích xung quanh và thể tích của hình chóp.
Quảng cáo
Trả lời:

Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông và các mặt bên là những tam giác đều nên là hình chóp đều.
⦁ Gọi \(M\) là trung điểm của \(CD.\) Khi đó \(CM = \frac{1}{2}CD = \frac{1}{2}a\).
Tam giác \(SCD\) đều nên đường trung tuyến \(SM\) đồng thời là đường cao nên \(SM \bot CD\), do đó \(\Delta SCM\) vuông tại \(M.\)
Áp dụng định lí Pythagore ta có \(S{C^2} = S{M^2} + C{M^2}\)
Suy ra \(S{M^2} = S{C^2} - C{M^2} = {a^2} - {\left( {\frac{1}{2}a} \right)^2} = \frac{3}{4}{a^2}.\) Do đó \(SM = \frac{{a\sqrt 3 }}{2}.\)
Diện tích xung quanh của hình chóp đều \(S.ABCD\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot \frac{{a\sqrt 3 }}{2} = {a^2}\sqrt 3 \) (đvdt).
⦁ Do \(ABCD\) là hình vuông cạnh \(a\) nên \(\Delta ADC\) vuông tại \(D\) có \(AD = DC = a,\) áp dụng định lí Pythagore ta có: \(A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2}.\) Do đó \(AC = a\sqrt 2 .\)
Vì \(SO\) là đường cao của hình chóp đều \(S.ABCD\) với \(ABCD\) là hình vuông nên \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\)
Do đó \(O\) là trung điểm của \(AC\) nên \(OA = \frac{1}{2}AC = \frac{1}{2} \cdot a\sqrt 2 = \frac{{a\sqrt 2 }}{2}.\)
Các mặt bên của hình chóp là các tam giác đều nên \(SA = AD = a.\)
Xét \(\Delta SAO\) vuông tại \(O,\) áp dụng định lí Pythagore ta có: \(S{A^2} = S{O^2} + A{O^2}\)
Suy ra \(S{O^2} = S{A^2} - A{O^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = {a^2} - \frac{1}{2}{a^2} = \frac{1}{2}{a^2}.\) Do đó \(SO = \frac{a}{{\sqrt 2 }}.\)
Thể tích của hình chóp đều \(S.ABCD\) là:
\(V = \frac{1}{3} \cdot {a^2} \cdot \frac{a}{{\sqrt 2 }} = \frac{{{a^3}}}{{3\sqrt 2 }}\) (đvtt).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)
Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)
\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)
\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)
\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)
Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)
Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)
Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).
Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:
\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]
Lời giải
Hướng dẫn giải
e) Ta có \(E = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)
Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)
Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(E \ge \frac{{11}}{{16}}.\)
Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x = - 2.\)
Vậy giá trị nhỏ nhất của biểu thức \(E\) là \(\frac{{11}}{{16}}\) tại \(x = - 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.