Câu hỏi:

20/09/2025 16 Lưu

Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]

     a) Tứ giác \[EFHD\] là hình gì? Vì sao?

     b) Tìm điều kiện của tam giác \[ABC\] để tứ giác \[EFHD\] là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]  (ảnh 1)

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)

\[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên \(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)

Do đó \[DG = FG\,\,\left( { = BF} \right),{\rm{ }}EG = HG\,\,\left( { = CH} \right).\]

Suy ra, \[G\] là trung điểm của \[FD,\] \[EH.\]

Tứ giác \[EFHD\] có hai đường chéo \[EH\]\(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.

b) Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\]\[EH \bot DF,\] tức là cần \[EG = DG,{\rm{ }}BG = CG\]\[BD \bot CE.\]

Xét \(\Delta BEG\)\[\Delta CDG\] có:

\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]

Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).

Suy ra \[BE = CD\] (hai cạnh tương ứng) (1)

\[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC\]

Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD\,\,\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra \[AB = AC.\]

Dễ thấy, nếu \[AB = AC\]\[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.

Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)

Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)

Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)

Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).

Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:

\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]

Lời giải

Hướng dẫn giải

e) Ta có \(E = \frac{{11}}{{12 - 4x - {x^2}}} = \frac{{11}}{{ - \left( {{x^2} + 4x + 4} \right) + 16}} = \frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}}.\)

Với mọi \(x,\) ta luôn có \({\left( {x + 2} \right)^2} \ge 0\) nên \( - {\left( {x + 2} \right)^2} + 16 \le 16\)

Suy ra \(\frac{{11}}{{ - {{\left( {x + 2} \right)}^2} + 16}} \ge \frac{{11}}{{16}},\) hay \(E \ge \frac{{11}}{{16}}.\)

Dấu “=” xảy ra khi và chỉ khi \({\left( {x + 2} \right)^2} = 0,\) tức là \(x =  - 2.\)

Vậy giá trị nhỏ nhất của biểu thức \(E\) là \(\frac{{11}}{{16}}\) tại \(x =  - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP