Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]
a) Tứ giác \[EFHD\] là hình gì? Vì sao?
b) Tìm điều kiện của tam giác \[ABC\] để tứ giác \[EFHD\] là hình vuông.
Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]
a) Tứ giác \[EFHD\] là hình gì? Vì sao?
b) Tìm điều kiện của tam giác \[ABC\] để tứ giác \[EFHD\] là hình vuông.
Quảng cáo
Trả lời:
![Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/27-1758293648.png)
a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)
Mà \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên \(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)Do đó \[DG = FG\,\,\left( { = BF} \right),{\rm{ }}EG = HG\,\,\left( { = CH} \right).\]
Suy ra, \[G\] là trung điểm của \[FD,\] \[EH.\]
Tứ giác \[EFHD\] có hai đường chéo \[EH\] và \(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.
b) ⦁ Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\] và \[EH \bot DF,\] tức là cần \[EG = DG,{\rm{ }}BG = CG\] và \[BD \bot CE.\]
⦁ Xét \(\Delta BEG\) và \[\Delta CDG\] có:
\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]
Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).
Suy ra \[BE = CD\] (hai cạnh tương ứng) (1)
Mà \[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC\]
Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD\,\,\,\,\,\,\left( 2 \right)\]
Từ (1) và (2) suy ra \[AB = AC.\]
⦁ Dễ thấy, nếu \[AB = AC\] và \[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.
Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
a) Ta lập bảng số liệu thống kê số giờ nắng của các tháng trong năm 2022 như sau:
|
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
Tổng số giờ nắng (h) |
\[34,4\] |
\[27,5\] |
\[49,4\] |
\[108,2\] |
\[88,8\] |
\[186,6\] |
\[190,7\] |
\[151,7\] |
\[133,2\] |
\[165,0\] |
\[126,2\] |
\[102,1\] |
b) Ta hoàn thành được biểu đồ đoạn thẳng biểu diễn số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định như sau:

c) Số giờ nắng tại Nam Định trong tháng 7 là cao nhất \(\left( {190,7\,\,\,h} \right)\) và tháng 2 là thấp nhất \(\left( {27,5\,\,h} \right).\)
d) Số giờ nắng của các tháng trong năm 2022 tại Nam Định giảm trong các khoảng thời gian: tháng 1 – tháng 2; tháng 4 – tháng 5; tháng 7 – tháng 8; tháng 8 – tháng 9; tháng 10 – tháng 11; tháng 11 – tháng 12.
Số giờ nắng của các tháng trong năm 2022 tại Nam Định tăng trong các khoảng thời gian: tháng 2 – tháng 3; tháng 3 – tháng 4; tháng 5 – tháng 6; tháng 6 – tháng 7; tháng 9 – tháng 10.
e) So với tháng 9, số giờ nắng tại Nam Định trong tháng 10 bằng \(\frac{{165}}{{133,2}} \cdot 100\% \approx 123,87\% .\)
Khi đó tháng 10 tăng khoảng \(123,87\% - 100\% = 23,87\% \) so với tháng 9.
Vậy thông tin của bài báo đó không chính xác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

