Cho \(\Delta ABC\) vuông tại \(A\,\,\left( {AB < AC} \right)\), \(E\) là trung điểm của \(BC\). Kẻ \(EF\) vuông góc với \(AB\) tại \(F\), \(ED\) vuông góc với \(AC\) tại \(D\). Gọi \(O\) là giao điểm của \(AE\) và \(DF\)
a) Chứng minh rằng tứ giác \(ADEF\) là hình chữ nhật.
b) Lấy điểm \(K\) sao cho \(D\) là trung điểm của \(EK\). Chứng minh tứ giác \(AECK\) là hình thoi.
c) Chứng minh rằng ba điểm \(B,O,K\) thẳng hàng.
d) Kẻ \(EM\) vuông góc với \(AK\) tại \(M\). Chứng minh \(\widehat {DMF} = 90^\circ \).
Cho \(\Delta ABC\) vuông tại \(A\,\,\left( {AB < AC} \right)\), \(E\) là trung điểm của \(BC\). Kẻ \(EF\) vuông góc với \(AB\) tại \(F\), \(ED\) vuông góc với \(AC\) tại \(D\). Gọi \(O\) là giao điểm của \(AE\) và \(DF\)
a) Chứng minh rằng tứ giác \(ADEF\) là hình chữ nhật.
b) Lấy điểm \(K\) sao cho \(D\) là trung điểm của \(EK\). Chứng minh tứ giác \(AECK\) là hình thoi.
c) Chứng minh rằng ba điểm \(B,O,K\) thẳng hàng.
d) Kẻ \(EM\) vuông góc với \(AK\) tại \(M\). Chứng minh \(\widehat {DMF} = 90^\circ \).
Quảng cáo
Trả lời:

a) Xét tứ giác \(ADEF\) có:
\(\widehat {FAD} = 90^\circ \) (do \(\Delta ABC\)
\(\widehat {AFE} = 90^\circ \) (vì \(EF\) vuông góc với \(AB\) tại \(F\));
\(\widehat {ADE} = 90^\circ \) (vì \(ED\) vuông góc với \(AC\) tại \(D\))
Vậy tứ giác \(ADEF\) là hình chữ nhật.
Suy ra tam giác \(AEC\) cân tại \(E\). Mà \(ED\) là đường cao của tam giác nên \(ED\) đồng thời là đường trung tuyến, do đó \(D\) là trung điểm của \(AC\) .
Xét tứ giác \(AECK\) có \(D\) là trung điểm của \(AC\), \(EK\) và \(EK\) vuông góc với \(AC\) tại \(D\).
Suy ra tứ giác \(AECK\) là hình thoi.
c) Vì tứ giác \(ADEF\) là hình chữ nhật nên \(O\) là trung điểm của \(AE\).
Vì tứ giác \(AECK\) là hình thoi nên \(AK\,{\rm{//}}\,EC;\,\,AK = EC\)
Mà \(EC = EB\) do \(E\) là trung điểm của \(BC\) nên \(AK\,{\rm{//}}\,EB;\,\,AK = EB\)
Suy ra tứ giác \(AKEB\) là hình bình hành. Khi đó, hai đường chéo \(AE,\,\,BK\) cắt nhau tại trung điểm của mỗi đường.
Mà \(O\) là trung điểm của \(AE\) nên \(O\) cũng là trung điểm của \(BK\).
Suy ra ba điểm \(B,O,K\) thẳng hàng.
d) Ta có \(\Delta AME\) vuông tại \(E\) có \(MO\) là đường trung tuyến ứng với cạnh huyền \(AE\) nên \(OM = \frac{1}{2}AE\)
Mà tứ giác \(ADEF\) là hình chữ nhật nên \(FD = AE\). Do đó, \(OM = \frac{1}{2}FD\)
Xét \(\Delta FMD\) có \(MO\) là đường trung tuyến ứng với cạnh \(FD\) và \(OM = \frac{1}{2}FD\) nên \(\Delta FMD\) vuông tại \(M\), suy ra \(\widehat {DMF} = 90^\circ .\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
a) Ta lập bảng số liệu thống kê số giờ nắng của các tháng trong năm 2022 như sau:
|
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
Tổng số giờ nắng (h) |
\[34,4\] |
\[27,5\] |
\[49,4\] |
\[108,2\] |
\[88,8\] |
\[186,6\] |
\[190,7\] |
\[151,7\] |
\[133,2\] |
\[165,0\] |
\[126,2\] |
\[102,1\] |
b) Ta hoàn thành được biểu đồ đoạn thẳng biểu diễn số giờ nắng của các tháng trong năm 2022 tại trạm quan trắc Nam Định như sau:

c) Số giờ nắng tại Nam Định trong tháng 7 là cao nhất \(\left( {190,7\,\,\,h} \right)\) và tháng 2 là thấp nhất \(\left( {27,5\,\,h} \right).\)
d) Số giờ nắng của các tháng trong năm 2022 tại Nam Định giảm trong các khoảng thời gian: tháng 1 – tháng 2; tháng 4 – tháng 5; tháng 7 – tháng 8; tháng 8 – tháng 9; tháng 10 – tháng 11; tháng 11 – tháng 12.
Số giờ nắng của các tháng trong năm 2022 tại Nam Định tăng trong các khoảng thời gian: tháng 2 – tháng 3; tháng 3 – tháng 4; tháng 5 – tháng 6; tháng 6 – tháng 7; tháng 9 – tháng 10.
e) So với tháng 9, số giờ nắng tại Nam Định trong tháng 10 bằng \(\frac{{165}}{{133,2}} \cdot 100\% \approx 123,87\% .\)
Khi đó tháng 10 tăng khoảng \(123,87\% - 100\% = 23,87\% \) so với tháng 9.
Vậy thông tin của bài báo đó không chính xác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

