Câu hỏi:

20/09/2025 16 Lưu

Cho \(\Delta ABC\) vuông tại \(A\,\,\left( {AB < AC} \right)\), \(E\) là trung điểm của \(BC\). Kẻ \(EF\) vuông góc với \(AB\) tại \(F\), \(ED\) vuông góc với \(AC\) tại \(D\). Gọi \(O\) là giao điểm của \(AE\)\(DF\)

     a) Chứng minh rằng tứ giác \(ADEF\) là hình chữ nhật.

     b) Lấy điểm \(K\) sao cho \(D\) là trung điểm của \(EK\). Chứng minh tứ giác \(AECK\) là hình thoi.

     c) Chứng minh rằng ba điểm \(B,O,K\) thẳng hàng.

     d) Kẻ \(EM\) vuông góc với \(AK\) tại \(M\). Chứng minh \(\widehat {DMF} = 90^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho \(\Delta ABC\) vuông tại \(A\,\,\left( {AB < AC} \right)\), \(E\) là trung điểm của \(BC\). Kẻ \(EF (ảnh 1)

a) Xét tứ giác \(ADEF\) có:

\(\widehat {FAD} = 90^\circ \) (do \(\Delta ABC\)

\(\widehat {AFE} = 90^\circ \) (vì \(EF\) vuông góc với \(AB\) tại \(F\));

\(\widehat {ADE} = 90^\circ \) (vì \(ED\) vuông góc với \(AC\) tại \(D\))

Vậy tứ giác \(ADEF\) là hình chữ nhật.

b) Tam giác \(ABC\) vuông  có \(AE\) là đường trung tuyến nên \(AE = EB = EC = \frac{1}{2}BC\).

Suy ra tam giác \(AEC\) cân tại \(E\). Mà \(ED\) là đường cao của tam giác nên \(ED\) đồng thời là đường trung tuyến, do đó \(D\) là trung điểm của \(AC\) .

Xét tứ giác \(AECK\) có \(D\) là trung điểm của \(AC\), \(EK\) và \(EK\) vuông góc với \(AC\) tại \(D\).

Suy ra tứ giác \(AECK\) là hình thoi.

c) Vì tứ giác \(ADEF\) là hình chữ nhật nên \(O\) là trung điểm của \(AE\).

Vì tứ giác \(AECK\) là hình thoi nên \(AK\,{\rm{//}}\,EC;\,\,AK = EC\)

Mà \(EC = EB\) do \(E\) là trung điểm của \(BC\) nên \(AK\,{\rm{//}}\,EB;\,\,AK = EB\)

Suy ra tứ giác \(AKEB\) là hình bình hành. Khi đó, hai đường chéo \(AE,\,\,BK\) cắt nhau tại trung điểm của mỗi đường.

Mà \(O\) là trung điểm của \(AE\) nên \(O\) cũng là trung điểm của \(BK\).

Suy ra ba điểm \(B,O,K\) thẳng hàng.

d) Ta có \(\Delta AME\) vuông tại \(E\) có \(MO\) là đường trung tuyến ứng với cạnh huyền \(AE\) nên \(OM = \frac{1}{2}AE\)

Mà tứ giác \(ADEF\) là hình chữ nhật nên \(FD = AE\). Do đó, \(OM = \frac{1}{2}FD\)

Xét \(\Delta FMD\) có \(MO\) là đường trung tuyến ứng với cạnh \(FD\) và \(OM = \frac{1}{2}FD\) nên \(\Delta FMD\) vuông tại \(M\), suy ra \(\widehat {DMF} = 90^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({x^2} + 5{y^2} - 3xy - 3x - y + 5 = 0\)

Suy ra \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\({x^2} - 6xy + 9{y^2} + {x^2} - 6x + 9 + {y^2} - 2y + 1 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\)

Với mọi \(x,\,\,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Suy ra \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} \ge 0\)

Do đó, để \({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\) thì \[\left\{ {\begin{array}{*{20}{l}}{{{\left( {x - 3y} \right)}^2} = 0}\\{{{\left( {x - 3} \right)}^2} = 0}\\{{{\left( {y - 1} \right)}^2} = 0}\end{array}} \right.\] hay \(\left\{ {\begin{array}{*{20}{l}}{x - 3y = 0}\\{x - 3 = 0}\\{y - 1 = 0}\end{array}} \right.\), tức là \(\left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.\).

Thay \(x = 3,\,\,y = 1\) vào biểu thức \(A,\) ta được:

\[A = \frac{{{{\left( {3 + 1 - 4} \right)}^{2222}} - {1^{2222}}}}{3} = \frac{{ - 1}}{3}.\]

Lời giải

a) \[A = {\left( {{x^2} - 2} \right)^2} + 2{\left( {x - 1} \right)^2} + \left( {2 - {x^2}} \right)\left( {2 + {x^2}} \right)\]

\[ = {x^4} - 4{x^2} + 4 + 2\left( {{x^2} - 2x + 1} \right) + \left( {4 - {x^4}} \right)\]

\[ = {x^4} - 4{x^2} + 4 + 2{x^2} - 4x + 2 + 4 - {x^4}\]

\[ = - 2{x^2} - 4x + 10\]\[ = - 2\left( {{x^2} + 2x - 5} \right)\]

\[ = - 2\left( {{x^2} + 2x + 1 - 6} \right)\]\[ = - 2{\left( {x + 1} \right)^2} + 12.\]

Với mọi \(x\), ta luôn có \[{\left( {x + 1} \right)^2} \ge 0,\] nên \[ - 2{\left( {x + 1} \right)^2} \le 0\], suy ra \[ - 2{\left( {x + 1} \right)^2} + 12 \le 12\]

Do đó \(A \le 12.\) Dấu xảy ra khi \[x = - 1\].

Vậy giá trị lớn nhất của biểu thức \(A\)\(12\) khi \(x = - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP