Câu hỏi:

20/09/2025 15 Lưu

Cho \(\Delta ABC\) có trung tuyến \(AD.\) Vẽ tia phân giác của \[\widehat {ADB}\] cắt \(AB\) tại \(M,\) tia phân giác của \[\widehat {ADC}\] cắt \(AC\) tại \(N.\) Chứng minh rằng:

a) \[\frac{{MB}}{{MA}} = \frac{{BD}}{{AD}}.\]            

b) \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]                     

c) \(MN\,{\rm{//}}\,BC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét \(\Delta ABD\)\(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác).

b) Xét \(\Delta ACD\)\(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác).

Chứng minh rằng:  a) \[\frac{{MB}}{{MA}} = \frac{{BD}}{{AD}}.\]          (ảnh 1)

\[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] (do \(D\) là trung điểm của \(BC)\) nên \[\frac{{NA}}{{NC}} = \frac{{MA}}{{MB}}\] hay \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]

c) Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Hình 1:

Ta có \(MB = AB - AM = 7 - 2 = 5.\)

Tam giác \(ABC\)\(MN\,{\rm{//}}\,AB,\) theo định lí Thalès ta có:

\(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) hay \(\frac{2}{5} = \frac{x}{6},\) suy ra \(x = \frac{{2 \cdot 6}}{5} = 2,4.\)

Vậy \(x = 2,4.\)

 

Hình 1

Hình 2:

Ta có: \[EF \bot MN,\,\,NP \bot MN\] nên \[EF\,{\rm{//}}\,NP.\]

\(MP = MF + FP = 5 + 15 = 20.\)

Tam giác \[MNP\]\[EF\,{\rm{//}}\,NP,\] theo định lí Thalès ta có:

\[\frac{{ME}}{{MN}} = \frac{{MF}}{{MP}}\] hay \(\frac{3}{y} = \frac{5}{{20}},\) suy ra \(y = \frac{{3 \cdot 20}}{5} = 12.\)

Vậy \(y = 12.\)

 

Hình 2

Hình 3:

Tam giác \[ABC\]\[M,\,\,N\] lần lượt là trung điểm của \[AB\]\[AC\] nên \[MN\] là đường trung bình của tam giác.

Do đó \[MN = \frac{1}{2}BC = \frac{1}{2} \cdot 15 = 7,5\,\,\left( {{\rm{cm}}} \right).\]

Vậy \[x = 7,5\,\,{\rm{cm}}.\]

 

Hình 3

Hình 4:

Tam giác \[ABC\]\[M,\,\,N\] lần lượt là trung điểm của \[AB\]\[AC\] nên \[MN\] là đường trung bình của tam giác.

Do đó \[MN = \frac{1}{2}BC.\]

Suy ra \[x = BC = 2MN = 2 \cdot 3,5 = 7\left( {{\rm{cm}}} \right).\]

Vậy \(x = 7{\rm{\;cm}}.\)

 

Hình 4

Hình 5:

Xét tam giác \[ABC\]\[AD\] là phân giác trong góc \[\widehat {BAC}\] (do \[\widehat {BAD} = \widehat {CAD}),\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}},\) hay \[\frac{5}{{8,5}} = \frac{3}{{DC}}\]

Suy ra \[DC = \frac{{8,5 \cdot 3}}{5} = 5,1.\]

Khi đó \(x = BC = DB + DC = 3 + 5,1 = 8,1.\)

 

Hình 5

Hình 6:

Xét tam giác \[IKJ\]\[IL\] là phân giác trong góc \[\widehat {KIJ}\] (do \(\widehat {KIL} = \widehat {JIL}),\) nên \(\frac{{IK}}{{IJ}} = \frac{{LK}}{{LJ}}\) suy ra \[\frac{{LK}}{{IK}} = \frac{{LJ}}{{IJ}}\] hay \[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}}\]

Theo tính chất dãy tỉ số bằng nhau ta có:

\[\frac{{LK}}{{6,2}} = \frac{{LJ}}{{8,7}} = \frac{{LK + LJ}}{{6,2 + 8,7}} = \frac{{KJ}}{{14,9}} = \frac{{12,5}}{{14,9}}.\]

Suy ra \[LJ = \frac{{12,5}}{{14,9}} \cdot 8,7 \approx 7,3.\]

 

Hình 6

Lời giải

a) Vì \(ABCD\) là hình thang có hai đáy \(AB\)\(CD\) nên \(AB\,{\rm{//}}\,CD.\)

\(AB\,{\rm{//}}\,DM\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí Thalès ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}}.\) \(\left( 1 \right)\)

\(AB\,{\rm{//}}\,MC\) (do \(AB\,{\rm{//}}\,CD),\) nên theo hệ quả định lí

Chứng minh rằng \[EF\,{\rm{//}}\,AB.\] (ảnh 1)

Thalès ta có \(\frac{{BF}}{{FM}} = \frac{{AB}}{{MC}}.\) \(\left( 2 \right)\)

Lại có \(M\) là trung điểm của \(CD\) nên \(DM = MC.\) \(\left( 3 \right)\)

Từ \(\left( 1 \right),\) \(\left( 2 \right)\)\(\left( 3 \right)\) ta có \(\frac{{AE}}{{EM}} = \frac{{BF}}{{FM}},\) theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,AB.\)

b) Xét \(\Delta ADM\)\(HE\,{\rm{//}}\,DM,\) theo hệ quả định lí Thalès ta có \(\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}.\)

Xét \(\Delta AMC\)\(EF\,{\rm{//}}\,MC,\) theo hệ quả định lí Thalès ta có \[\frac{{EF}}{{MC}} = \frac{{AE}}{{AM}}.\]

Do đó \(\frac{{HE}}{{DM}} = \frac{{EF}}{{MC}},\)\(DM = MC\) nên \(HE = EF.\)

Chứng minh tương tự ta cũng có \(EF = FN.\) Suy ra \(HE = EF = FN.\)

c) Vì \(M\) là trung điểm của \(CD\) nên \(DM = MC = \frac{1}{2}CD = \frac{1}{2} \cdot 12 = 6{\rm{\;cm}}.\)

Theo câu a, ta có \(\frac{{AE}}{{EM}} = \frac{{AB}}{{DM}} = \frac{{7,5}}{6} = \frac{5}{4}.\) Suy ra \(\frac{{AE}}{5} = \frac{{EM}}{4}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AE}}{5} = \frac{{EM}}{4} = \frac{{AE + EM}}{{5 + 4}} = \frac{{AM}}{9}.\)

Do đó \(\frac{{AE}}{{AM}} = \frac{5}{9}.\)

Mà theo câu b, \[\frac{{HE}}{{DM}} = \frac{{AE}}{{AM}}\] nên \[\frac{{HE}}{{DM}} = \frac{5}{9}.\]

Suy ra \(HE = \frac{5}{9}DM = \frac{5}{9} \cdot 6 = \frac{{10}}{3}{\rm{\;cm}}.\)

Lại có \(HE = EF = FN\) (câu b) nên \(HN = 3HE = 3 \cdot \frac{{10}}{3} = 10{\rm{\;cm}}.\)

Vậy \(HN = 10{\rm{\;cm}}.\)

Câu 3

Cho tam giác \(ABC\)\(BC = 15{\rm{\;cm}},\,\,CA = 18{\rm{\;cm}}\)\(AB = 12{\rm{\;cm}}.\) Gọi \(I\)\(G\) lần lượt là tâm đường tròn nội tiếp và trọng tâm \(\Delta ABC.\)

     a) Chứng minh \(IG\,{\rm{//}}\,BC.\)              b) Tính độ dài đoạn thẳng \(IG.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP