Tìm chữ số \(x\) và \(y\) biết:
d) \(\overline {57x2y} \) chia hết cho \[5;\,\,9\] nhưng không chia hết cho \[2\].
d) \(\overline {57x2y} \) chia hết cho \[5;\,\,9\] nhưng không chia hết cho \[2\].
Quảng cáo
Trả lời:
d) \(\overline {57x2y} \) chia hết \[5\] nhưng không chia hết cho \[2\] nên \[y = 5\].
Ta có tổng các chữ số của số \(\overline {57x25} \) là \(5 + 7 + x + 2 + 5 = 19 + x\).
Số \(\overline {57x25} \) chia hết \[9\] nên \(\left( {19 + x} \right)\,\, \vdots \,\,9\), suy ra \[x = 8.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).
⦁ Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)
⦁ Ta thấy \[15k\,\, \vdots \,\,5\] và nên .
Lời giải
f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\) và \[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).
Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)
Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)
Vậy \(x = 4.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.