Chia một số cho 15 được dư là 9. Hỏi số đó có chia hết cho 3 không? Có chia hết cho 5 không?
Chia một số cho 15 được dư là 9. Hỏi số đó có chia hết cho 3 không? Có chia hết cho 5 không?
Quảng cáo
Trả lời:

Hướng dẫn giải
Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).
⦁ Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)
⦁ Ta thấy \[15k\,\, \vdots \,\,5\] và nên .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\) và \[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).
Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)
Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)
Vậy \(x = 4.\)
Lời giải
e) Vì \(90\,\, \vdots \,\,x,\,\,150\,\, \vdots \,\,x\) nên \(x \in \)ƯC\(\left( {90,\,\,150} \right)\)
Mà ƯCLN\(\left( {90,\,\,150} \right) = 30\) suy ra \(x \in \left\{ {1;{\mkern 1mu} {\mkern 1mu} \,2;{\mkern 1mu} {\mkern 1mu} \,3;{\mkern 1mu} {\mkern 1mu} \,5;{\mkern 1mu} {\mkern 1mu} \,6;{\mkern 1mu} \,10;{\mkern 1mu} {\mkern 1mu} \,15;{\mkern 1mu} {\mkern 1mu} \,30} \right\}\).
Lại có \(5 < x < 30\) nên \(x \in \left\{ {6;\,\,10;\,\,15} \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.