Tìm các số tự nhiên \(x\), sao cho
e) \(90\,\, \vdots \,\,x,\,\,150\,\, \vdots \,\,x\) và \(5 < x < 30.\)
Quảng cáo
Trả lời:

e) Vì \(90\,\, \vdots \,\,x,\,\,150\,\, \vdots \,\,x\) nên \(x \in \)ƯC\(\left( {90,\,\,150} \right)\)
Mà ƯCLN\(\left( {90,\,\,150} \right) = 30\) suy ra \(x \in \left\{ {1;{\mkern 1mu} {\mkern 1mu} \,2;{\mkern 1mu} {\mkern 1mu} \,3;{\mkern 1mu} {\mkern 1mu} \,5;{\mkern 1mu} {\mkern 1mu} \,6;{\mkern 1mu} \,10;{\mkern 1mu} {\mkern 1mu} \,15;{\mkern 1mu} {\mkern 1mu} \,30} \right\}\).
Lại có \(5 < x < 30\) nên \(x \in \left\{ {6;\,\,10;\,\,15} \right\}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có Ư\(\left( {30} \right) = \left\{ {1;\,\,2;\,\,3;\,\,5;\,\,6;\,\,10;\,\,15;\,\,30} \right\}\)
Mà \(x \in \)Ư\[\left( {30} \right)\] và \(x < 10\) nên \[x = \left\{ {1;\,\,2;\,\,3;\,\,5;\,\,6} \right\}\].
Lời giải
a) \(\overline {17x2y} \) chia hết cho \(2;\,\,5\) nên \(y = 0\).
Ta có tổng các chữ số của số \(\overline {17x20} \) là \(1 + 7 + x + 2 + 0 = 10 + x\).
Số \(\overline {17x20} \) chia hết cho \(3\) khi \(\left( {10 + x} \right)\,\, \vdots \,\,3,\) suy ra \(x \in \left\{ {2;\,\,5;\,\,8} \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.