Câu hỏi:

21/09/2025 54 Lưu

Tìm các số tự nhiên \(x\), sao cho
g) \(x\,\, \vdots \,\,4,\,\,x\,\, \vdots \,\,6\) \[0 < x < 50.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

g) Vì \(x\,\, \vdots \,\,4,\,\,x\,\, \vdots \,\,6\) nên \(x \in {\rm{BC}}\left( {4,\,\,6} \right)\).

Ta có: \(4 = {2^2};\,\,\,\,\,6 = 2 \cdot 3\).

Do đó \({\rm{BCNN}}\left( {4,\,\,6} \right) = {2^2} \cdot 3 = 12\) nên \({\rm{BC}}\left( {4,\,\,6} \right) = \left\{ {0;\,\,12;\,\,24;\,\,36;\,\,48;\,\,60;\,\,72;\,\,\,...} \right\}\)

\[0 < x < 50\] nên \(x \in \left\{ {12;\,\,24;\,\,36;\,\,48} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).

Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)

Ta thấy \[15k\,\, \vdots \,\,5\]9    5 nên 15k+95.

Lời giải

f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\)\[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).

Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)

Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)

Vậy \(x = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP