Câu hỏi:

21/09/2025 139 Lưu

Tìm các số tự nhiên \(x\), sao cho
g) \(x\,\, \vdots \,\,4,\,\,x\,\, \vdots \,\,6\) \[0 < x < 50.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

g) Vì \(x\,\, \vdots \,\,4,\,\,x\,\, \vdots \,\,6\) nên \(x \in {\rm{BC}}\left( {4,\,\,6} \right)\).

Ta có: \(4 = {2^2};\,\,\,\,\,6 = 2 \cdot 3\).

Do đó \({\rm{BCNN}}\left( {4,\,\,6} \right) = {2^2} \cdot 3 = 12\) nên \({\rm{BC}}\left( {4,\,\,6} \right) = \left\{ {0;\,\,12;\,\,24;\,\,36;\,\,48;\,\,60;\,\,72;\,\,\,...} \right\}\)

\[0 < x < 50\] nên \(x \in \left\{ {12;\,\,24;\,\,36;\,\,48} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\)\[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).

Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)

Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)

Vậy \(x = 4.\)

Lời giải

d) \(\overline {57x2y} \) chia hết \[5\] nhưng không chia hết cho \[2\] nên \[y = 5\].

Ta có tổng các chữ số của số \(\overline {57x25} \) là \(5 + 7 + x + 2 + 5 = 19 + x\).

Số \(\overline {57x25} \) chia hết \[9\] nên \(\left( {19 + x} \right)\,\, \vdots \,\,9\), suy ra \[x = 8.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP