Câu hỏi:

21/09/2025 60 Lưu

Tìm số tự nhiên \(n\) để:
c) \(\left( {35 - 12n} \right)\,\, \vdots \,\,n\) (với \(n < 3{\rm{)}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c) Với \(n \in \mathbb{N},\) ta có \(12n\,\, \vdots \,\,n\) nên để \(\left( {35 - 12n} \right)\,\, \vdots \,\,n\) thì \(35\,\, \vdots \,\,n\) hay \(n \in \)Ư\(\left( {35} \right) = \left\{ {1;\,\,5;\,\,7;\,\,35} \right\}\)

Từ đó suy ra: \[n \in \left\{ {1;\,\,5;\,\,7;\,\,35} \right\}\].

\(n < 3\) nên \(n = 1\). Vậy \(n = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).

Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)

Ta thấy \[15k\,\, \vdots \,\,5\]9    5 nên 15k+95.

Lời giải

f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\)\[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).

Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)

Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)

Vậy \(x = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP