Tìm số tự nhiên \(n\) để:
d) \(\left( {n + 8} \right)\,\, \vdots \,\,\left( {n + 3} \right)\).
Quảng cáo
Trả lời:
d) Với \(n \in \mathbb{N},\) ta có \(\left( {n + 3} \right)\,\, \vdots \,\,\left( {n + 3} \right)\) nên để \(\left( {n + 8} \right) \vdots \left( {n + 3} \right)\) hay \(\left( {n + 3 + 5} \right)\,\, \vdots \,\,\left( {n + 3} \right)\) thì \(5\,\, \vdots \,\,\left( {n + 3} \right),\) tức là \(\left( {n + 3} \right) \in \)Ư\(\left( 5 \right) = \left\{ {1;\,\,5} \right\}\).
Mà \(n \in \mathbb{N}\) nên \(n + 3 \ge 3\), do đó \(n + 3 = 5,\) suy ra \(n = 2.\)
Vậy \(n = 2\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(a\) là số chia cho 15 được dư là 9. Khi đó \(a = 15k + 9\,\,\left( {k \in \mathbb{N}} \right)\).
⦁ Ta thấy \(15\,\, \vdots \,\,3\) nên \(15k\,\, \vdots \,\,3\), lại có \(9\,\, \vdots \,\,3\) suy ra \(\left( {15k + 9} \right)\,\, \vdots \,\,3,\) tức là \(a\,\, \vdots \,\,3.\)
⦁ Ta thấy \[15k\,\, \vdots \,\,5\] và nên .
Lời giải
f) Vì \(24\,\, \vdots \,\,x,\,\,36\,\, \vdots \,\,x,\,\,160\,\, \vdots \,\,x\) và \[x\] là lớn nhất nên \(x = \) ƯCLN\(\left( {24,\,\,36,\,\,160} \right)\).
Ta có \(24 = {2^3} \cdot 3,\,\,\,\,\,36 = {2^2} \cdot {3^2};\,\,\,\,\,160 = {2^5} \cdot 5.\)
Do đó ƯCLN\(\left( {24,\,\,36,\,\,160} \right) = {2^2} = 4.\)
Vậy \(x = 4.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.