Câu hỏi:

21/09/2025 22 Lưu

Trong một hội nghị có 100 đại biểu tham dự. Mỗi đại biểu có thể sử dụng ít nhất một trong ba thứ tiếng: Nga, Trung Quốc và Anh. Biết rằng có 30 đại biểu chỉ nói được tiếng Anh, 40 đại biểu nói được tiếng Nga, 45 đại biểu nói được tiếng trung và 10 đại biểu chỉ nói được hai thứ tiếng Nga và
Trung Quốc. Hỏi có bao nhiêu đại biểu nói được cả ba thứ tiếng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Hỏi có bao nhiêu đại biểu nói được cả ba thứ tiếng? (ảnh 1)

Số đại biểu nói được tiếng Nga hoặc tiếng Trung Quốc là: \(100 - 30 = 70\) (đại biểu).

Số đại biểu nói được tiếng Nga nhưng không nói được tiếng Trung Quốc là: \(70 - 45 = 25\) (đại biểu).

Số đại biểu nói được tiếng Trung Quốc nhưng không nói được tiếng Nga là: \(70 - 40 = 30\) (đại biểu).

Số đại biểu nói được tiếng Nga và tiếng Trung Quốc là: \(70 - \left( {25 + 30} \right) = 15\) (đại biểu).

Số đại biểu nói được cả ba thứ tiếng là: \(15 - 10 = 5\) (đại biểu).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

b) Gọi ƯCLN\(\left( {3n + 10,\,\,n + 3} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\), suy ra \(\left( {3n + 10} \right)\,\, \vdots \,\,d\)\(\left( {n + 3} \right)\,\, \vdots \,\,d\)

Từ \(\left( {n + 3} \right)\,\, \vdots \,\,d\) ta suy ra \(\left( {3n + 9} \right)\,\, \vdots \,\,d\).

Do đó \(\left( {3n + 10 - 3n - 9} \right)\,\, \vdots \,\,d\) hay \(1\,\, \vdots \,\,d\) nên \(d = 1.\)

Vậy \(3n + 10;\,\,n + 3\) là hai số nguyên tố cùng nhau.

Lời giải

b) Gọi ƯCLN\(\left( {7n + 13,\,\,2n + 4} \right) = d\,\,\left( {d \in {\mathbb{N}^*}} \right)\)

Suy ra \(\left( {7n + 13} \right)\,\, \vdots \,\,d\)\(\left( {2n + 4} \right)\,\, \vdots \,\,d\)

Từ \(\left( {7n + 13} \right)\,\, \vdots \,\,d\) suy ra \[2\left( {7n + 13} \right)\,\, \vdots \,\,d\]

Từ \(\left( {2n + 4} \right)\,\, \vdots \,\,d\) suy ra \[7\left( {2n + 4} \right)\,\, \vdots \,\,d\]

Do đó \[\left[ {7\left( {2n + 4} \right) - 2\left( {7n + 13} \right)} \right]\,\, \vdots \,\,d\] hay \[2\,\, \vdots \,\,d\] nên \[d \in \left\{ {1;\,\,2} \right\}.\]

Để \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau thì \(d \ne 2\).

\(2n + 4\) luôn chia hết cho 2 và \(7n + 13\) không chia hết cho 2 khi \(n\) chẵn.

Vậy \(n\) chẵn thì \(7n + 13\)\(2n + 4\) là hai số nguyên tố cùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP