Một người làm vườn có hai khu vườn, khu vườn hình chữ nhật có chiều dài \(\left( {x + 2} \right)\,\,{\rm{m}}\,{\rm{,}}\) chiều rộng \(\left( {x - 1} \right)\,\,{\rm{m}}\,{\rm{,}}\) khu vườn hình vuông cạnh là \(\left( {x + 1} \right)\,\,{\rm{m}}\,{\rm{.}}\) Viết biểu thức đại số tính tổng diện tích của hai khu vườn trên.
Một người làm vườn có hai khu vườn, khu vườn hình chữ nhật có chiều dài \(\left( {x + 2} \right)\,\,{\rm{m}}\,{\rm{,}}\) chiều rộng \(\left( {x - 1} \right)\,\,{\rm{m}}\,{\rm{,}}\) khu vườn hình vuông cạnh là \(\left( {x + 1} \right)\,\,{\rm{m}}\,{\rm{.}}\) Viết biểu thức đại số tính tổng diện tích của hai khu vườn trên.
Quảng cáo
Trả lời:

Hướng dẫn giải
Diện tích của khu vườn hình chữ nhật là:
\[{S_1} = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + 2x - x - 2 = {x^2} + x - 2\,\,({{\rm{m}}^{\rm{2}}})\].
Diện tích khu vườn hình vuông là:
\[{S_2} = {\left( {x + 1} \right)^2} = {x^2} + 2x + 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Biểu thức đại số tính tổng diện tích của hai khu vườn trên là:
\[S = {S_1} + {S_2} = \left( {{x^2} + x - 2} \right) + \left( {{x^2} + 2x + 1} \right)\]
\[ = {x^2} + x - 2 + {x^2} + 2x + 1\]
\[ = \left( {{x^2} + {x^2}} \right) + \left( {2x + x} \right) + \left( {1 - 2} \right)\]
\[ = 2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}})\].
Vậy biểu thức đại số tính tổng diện tích của hai khu vườn trên là \[2{x^2} + 3x - 1\,\,({{\rm{m}}^{\rm{2}}}).\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;(cm)}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Hướng dẫn giải
a) Khối rubik có dạng như hình bên thường được gọi là hình chóp tam giác đều.
b) Số mặt là 4; số cạnh là 6; số đỉnh là 1.
c) Có 13 tam giác đều có trên một mặt của chiếc rubik này.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.