Câu hỏi:

21/09/2025 32 Lưu

Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\) (làm tròn các kết quả đến chữ số thập phân thứ hai)

Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\) (làm tròn các kết quả đến chữ số thập phân thứ hai) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Diện tích đáy của hình lăng trụ là: \(S = {6^2} = 36\;\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Thể tích hình lăng trụ là \(V = S \cdot h = 36 \cdot 7 = 252\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Khi đó, thể tích khối chóp \(O.A'B'C'D'\):

\({V_{O.A'B'C'D'}} = \frac{1}{3}V = \frac{1}{3} \cdot 252 = 84\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Vậy thể tích khối chóp \(O.A'B'C'D'\)\(84\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP