Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\) (làm tròn các kết quả đến chữ số thập phân thứ hai)

Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\) (làm tròn các kết quả đến chữ số thập phân thứ hai)
Quảng cáo
Trả lời:

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;(cm)}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Khối rubik có dạng như hình bên thường được gọi là hình chóp tam giác đều.
b) Số mặt là 4; số cạnh là 6; số đỉnh là 1.
c) Có 13 tam giác đều có trên một mặt của chiếc rubik này.
Lời giải
Hướng dẫn giải
Diện tích đáy của hình lăng trụ là: \(S = {6^2} = 36\;\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Thể tích hình lăng trụ là \(V = S \cdot h = 36 \cdot 7 = 252\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Khi đó, thể tích khối chóp \(O.A'B'C'D'\) là:
\({V_{O.A'B'C'D'}} = \frac{1}{3}V = \frac{1}{3} \cdot 252 = 84\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy thể tích khối chóp \(O.A'B'C'D'\) là \(84\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.