Câu hỏi:

21/09/2025 25 Lưu

Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoảng cách “an toàn” khi \(2,0 < \frac{{AH}}{{BH}} < 2,2\) (xem hình vẽ). Tính chiều cao \[AH.\] Từ đó kiểm tra xem khoảng cách đặt thang cách chân tường là \[BH\] có “an toàn” không?
Một chiếc thang có chiều dài \[AB = 3,7\,\,{\rm{m}}\] đặt cách một bức tường khoảng cách \[BH = 1,2\,\,{\rm{m}}.\] Biết rằng khoản (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Áp dụng định lí Pytthagore vào tam giác \(ABH\) vuông tại \(H\) ta có: \(A{B^2} = A{H^2} + B{H^2}\).

Suy ra \(A{H^2} = A{B^2} - B{H^2}\)

Do đó \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {3,{7^2} - 1,{2^2}} = 3,5\;\left( {\rm{m}} \right)\)

Ta có \(\frac{{AH}}{{BH}} = \frac{{3,5}}{{1,2}} \approx 2,9\).

\(2,9 > 2,2\) nên khoảng cách đặt thang cách chân tường là không an toàn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP