Khi xây móng nhà, để kiểm tra xem hai phần móng có vuông góc với nhau hay không, người thợ xây thường lấy \[AB = 3\,\,{\rm{cm}},{\rm{ }}AC = 4\,\,{\rm{cm}}\] \[(A\] là điểm chung của hai phần móng nhà hay còn gọi là góc nhà), rồi đo đoạn \[BC\] nếu \[BC = 5\,\,{\rm{cm}}\] thì hai phần móng đó vuông góc với nhau. Hãy giải thích vì sao?

Quảng cáo
Trả lời:

Hướng dẫn giải
Xét tam giác \[ABC\] ta có:
\(B{C^2} = {5^2} = 25;\) \(A{B^2} + A{C^2} = {3^2} + {4^2} = 25\).
Do đó \(B{C^2} = A{B^2} + A{C^2}.\)
Theo định lý Pythagore đảo thì tam giác \[ABC\] vuông tại \[A.\]
Vậy hai phần móng đó vuông góc với nhau.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;(cm)}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Hướng dẫn giải
a) Khối rubik có dạng như hình bên thường được gọi là hình chóp tam giác đều.
b) Số mặt là 4; số cạnh là 6; số đỉnh là 1.
c) Có 13 tam giác đều có trên một mặt của chiếc rubik này.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.