Câu hỏi:

21/09/2025 21 Lưu

Người ta buộc chú cún bằng sợi dây có một đầu buộc cố định tại điểm \(O\) làm cho chú cún cách điểm \(O\) xa nhất là \(9{\rm{\;m}}.\) Hỏi với các kích thước đã cho như hình trên, chú cún có thể đến các vị trí \(A,\,\,B,\,\,C,\,\,D\) để canh giữ mảnh vườn hình chữ nhật \[ABCD\] hay không?

Người ta buộc chú cún bằng sợi dây có một đầu buộc cố định tại điểm \(O\) làm cho chú cún cách điểm \(O\) xa nhất là \(9{\ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Áp dụng định lí Pythagore cho các tam giác vuông \(AMO,\,\,ONC,\,\,OMD,\,\,OBE,\) ta tính được:

\(O{A^2} = {3^2} + {4^2} = 25\) hay \(OA = 5{\rm{\;m;}}\)

\(O{C^2} = {6^2} + {8^2} = 100\) hay \(OC = 10{\rm{\;m}};\)

\(O{D^2} = {3^2} + {8^2} = 73\) hay \(OD = \sqrt {73} {\rm{\;m}};\)

\(O{B^2} = {4^2} + {6^2} = 52\) hay \(OB = \sqrt {52} {\rm{\;m}}{\rm{.}}\)

Ta thấy \[OA = 5{\rm{\;m}} < 9{\rm{\;m}},\,\,OD = \sqrt {73} {\rm{\;m}} < 9{\rm{\;m}},\,\,OB = \sqrt {52} {\rm{\;m}} < 9{\rm{\;m}},\,\,OC = 10{\rm{\;m}} > 9{\rm{\;m}}\,{\rm{.}}\]

Do đó, chú cún có thể đến các vị trí \(A,\,\,D,\,\,B\) nhưng không thể đến được vị trí \(C.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP