Tìm \(m,\,\,n \in \mathbb{N}\) để phép chia sau đây là phép chia hết:
\(\left( {4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}} \right):\left( { - 4{x^m}{y^n}} \right)\).
Tìm \(m,\,\,n \in \mathbb{N}\) để phép chia sau đây là phép chia hết:
\(\left( {4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}} \right):\left( { - 4{x^m}{y^n}} \right)\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Để đa thức \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\) chia hết cho đơn thức \( - 4{x^m}{y^n}\) thì mọi hạng tử của đa thức \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\) đều phải chia hết cho đơn thức \( - 4{x^m}{y^n}\).
Khi đó ta cần có: Số mũ của \(x\) và số mũ của \(y\) trong \( - 4{x^m}{y^n}\) nhỏ hơn hoặc bằng số mũ của \(x\) và số mũ của \(y\) trong mọi hạng tử của \(4{x^6}{y^7} - 10{x^5}{y^6} + 8{x^4}{y^5}\), tức là phải có \(\left\{ \begin{array}{l}m \le 6\\m \le 5\\m \le 4\\n \le 7\\n \le 6\\n \le 5\end{array} \right.\).
Khi đó ta tìm được \(m \le 4\) và \(n \le 5\).
Mà \(m,\,\,n \in \mathbb{N}\), do đó \(m \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}\) và \(n \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\).
Vậy \(m \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}\) và \(n \in \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5} \right\}\) thì thỏa mãn yêu cầu bài toán.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;(cm)}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Hướng dẫn giải
a) Khối rubik có dạng như hình bên thường được gọi là hình chóp tam giác đều.
b) Số mặt là 4; số cạnh là 6; số đỉnh là 1.
c) Có 13 tam giác đều có trên một mặt của chiếc rubik này.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.