Câu hỏi:

21/09/2025 18 Lưu

a) Tìm giá trị lớn nhất của phân thức \(A = \frac{{35}}{{{x^2} - 2x + 6}}\).

b) Tìm giá trị nhỏ nhất của phân thức \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có \({x^2} - 2x + 6 = {x^2} - 2x + 1 + 5 = {\left( {x - 1} \right)^2} + 5\).

\({\left( {x - 1} \right)^2} \ge 0\) nên \({\left( {x - 1} \right)^2} + 5 \ge 5\).

Để phân thức \(A\) đạt giá trị lớn nhất thì biểu thức \({x^2} - 2x + 5\) đạt giá trị nhỏ nhất.

Khi đó, \(A = \frac{{35}}{{{x^2} - 2x + 6}} = \frac{{35}}{{{{\left( {x - 1} \right)}^2} + 5}} \le \frac{{35}}{5} = 7\).

Dấu xảy ra khi và chỉ khi \({\left( {x - 1} \right)^2} = 0\) hay \(x = 1\).

 Vậy giá trị lớn nhất của phân thức \(A\) là 7 khi \(x = 1\).

b) Tìm giá trị nhỏ nhất của \[B = \frac{{12}}{{12 - 4x - {x^2}}}\].

Ta có \(12 - 4x - {x^2} = - {x^2} - 4x - 4 + 16 = - {\left( {x + 4} \right)^2} + 16\).

\( - {\left( {x + 4} \right)^2} \le 0\) nên \( - {\left( {x + 4} \right)^2} + 16 \le 16\).

Để phân thức \(B\) đạt giá trị nhỏ nhất thì biểu thức \[12 - 4x - {x^2}\] đạt giá trị lớn nhất.

Khi đó, \[B = \frac{{12}}{{12 - 4x - {x^2}}} = \frac{{12}}{{ - {{\left( {x + 4} \right)}^2} + 16}} \le \frac{{12}}{{16}} = \frac{3}{4}\].

Dấu xảy ra khi và chỉ khi \({\left( {x + 4} \right)^2} = 0\) hay \(x = - 4\).

 Vậy giá trị lớn nhất của phân thức \(B\)\[\frac{3}{4}\] khi \(x = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.

Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).

Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).

Do đó \(CI = \sqrt {\frac{{75}}{4}}  \approx 4,33{\rm{\;(cm)}}.\)

Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:

Sđáy=12CIAB124,33510,83 cm2.

Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:

Stp=Sxq+Sđáy45+10,83=55,83  cm2.

Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP