Tìm \(a,\,\,b,\,\,c \in \mathbb{N}*\) sao cho \(\left( {a - \frac{1}{b}} \right)\left( {b - \frac{1}{c}} \right)\left( {c - \frac{1}{a}} \right) \in \mathbb{N}*\).
Tìm \(a,\,\,b,\,\,c \in \mathbb{N}*\) sao cho \(\left( {a - \frac{1}{b}} \right)\left( {b - \frac{1}{c}} \right)\left( {c - \frac{1}{a}} \right) \in \mathbb{N}*\).
Quảng cáo
Trả lời:

Hướng dẫn giải
Ta có: \[\left( {a - \frac{1}{b}} \right)\left( {b - \frac{1}{c}} \right)\left( {c - \frac{1}{a}} \right)\]\[ = \left( {\frac{{ab - 1}}{b}} \right)\left( {\frac{{bc - 1}}{c}} \right)\left( {\frac{{ac - 1}}{a}} \right)\]
\[ = \frac{{\left( {ab - 1} \right)\left( {bc - 1} \right)\left( {ac - 1} \right)}}{{abc}}\]\[ = \frac{{\left( {a{b^2}c - ab - bc + 1} \right)\left( {ac - 1} \right)}}{{abc}}\]
\[ = \frac{{{a^2}{b^2}{c^2} - a{b^2}c - {a^2}bc + ab - ab{c^2} + bc + ac + 1}}{{abc}}\]
\[ = abc - a - b - c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{{abc}}\]
\[ = abc - (a + b + c) + \left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) + \frac{1}{{abc}}\]
Để \(\left( {a - \frac{1}{b}} \right)\left( {b - \frac{1}{c}} \right)\left( {c - \frac{1}{a}} \right) \in \mathbb{N}*\) thì \(a\,,\,\,b\,,\,\,c \in \mathbb{N}*\) và \[abc \in \] Ư\[\left( 1 \right) = \left\{ 1 \right\}.\]
Với \[a = b = c = 1\], ta có: \[abc - (a + b + c) + \left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) + \frac{1}{{abc}}\]
\[ = 1 \cdot 1 \cdot 1 - \left( {1 + 1 + 1} \right) + \left( {1 + 1 + 1} \right) + 1 = 2\].
Vậy \[a = b = c = 1\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:
\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)Tam giác \(ABC\) là tam giác đều nên đường trung tuyến \(CI\) đồng thời là đường cao.
Xét \(\Delta ACI\) vuông tại \(I\) có \(A{C^2} = A{I^2} + C{I^2}\).
Suy ra \(C{I^2} = A{C^2} - A{I^2} = {5^2} - {\left( {\frac{1}{2} \cdot 5} \right)^2} = 25 - \frac{{25}}{4} = \frac{{75}}{4}\).
Do đó \(CI = \sqrt {\frac{{75}}{4}} \approx 4,33{\rm{\;(cm)}}.\)
Diện tích đáy của hình chóp tam giác đều \(S.ABC\) là:
Diện tích toàn phần của hình chóp tam giác đều \(S.ABC\) là:
Vậy hình chóp \(S.ABC\) có diện tích xung quanh là \(45{\rm{\;c}}{{\rm{m}}^2}\) và diện tích toàn phần là \(55,83{\rm{\;}}\,{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Hướng dẫn giải
a) Khối rubik có dạng như hình bên thường được gọi là hình chóp tam giác đều.
b) Số mặt là 4; số cạnh là 6; số đỉnh là 1.
c) Có 13 tam giác đều có trên một mặt của chiếc rubik này.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.